scholarly journals Targeting of DDR1 with antibody‐drug conjugates has antitumor effects in a mouse model of colon carcinoma

2019 ◽  
Vol 13 (9) ◽  
pp. 1855-1873 ◽  
Author(s):  
Yiran Tao ◽  
Ruixue Wang ◽  
Qinhuai Lai ◽  
Mengdan Wu ◽  
Yuxi Wang ◽  
...  
2021 ◽  
Vol 32 (3) ◽  
pp. 595-606
Author(s):  
Ludovic Juen ◽  
Christine B. Baltus ◽  
Camille Gély ◽  
Ofelia Feuillâtre ◽  
Audrey Desgranges ◽  
...  

2021 ◽  
Author(s):  
Yasuaki Anami ◽  
Yoshihiro Otani ◽  
Wei Xiong ◽  
Summer Y. Y. Ha ◽  
Aiko Yamaguchi ◽  
...  

Glioblastoma multiforme (GBM) is characterized by aggressive growth and the poorest prognosis of all brain tumor types. Most therapies rarely provide clinically meaningful improvements in outcomes of patients with GBM. Antibody-drug conjugates (ADCs) are emerging chemotherapeutics with stunning success in cancer management. Although promising, clinical studies of three ADCs for treating GBM, including Depatux-M, have been discontinued because of safety concerns and limited therapeutic benefits. Here, we report that ADC homogeneity is a critical parameter to maximize the therapeutic potential in GBM therapy. We demonstrate that homogeneous conjugates generated using our linker show enhanced drug delivery to intracranial brain tumors. Notably, compared to heterogeneous ADCs, including a Depatux-M analog, our ADCs provide greatly improved antitumor effects and survival benefits in orthotopic brain tumor models, including a patient-derived xenograft model of GBM. Our findings warrant the future development of homogeneous ADCs as promising molecular entities toward cures for intractable brain tumors.


2019 ◽  
Vol 10 (03) ◽  
pp. 140-141
Author(s):  
Alexander Kretzschmar

Die Therapielandschaft des metastasierten Urothelkarzinoms hat sich seit der Zulassung der ersten Immun-Checkpoint-Inhibitoren verändert. Die neuen Therapien sind deutlich effektiver, allerdings erreichen die Responseraten der neuen Therapien nur bis zu etwa 30 %, beklagte Prof. Matthew Milowsky, Chapel Hill/USA, auf einer Oral Abstract Session auf dem ASCO-GU. In San Francisco gaben erste Vorträge und Poster bereits einen Einblick, wovon diejenigen Patienten profitieren könnten, die auf die etablierten Chemotherapien und die neuen Immuntherapien nicht ansprechen. Manche Onkologen sprechen bereits von der „Post-Checkpoint-Ära”. Als Kandidaten werden vor allem Antikörper-Wirkstoff-Konjugate (antibody-drug conjugates; ADC) gehandelt – und zwar nicht nur zur Therapie des metastasierten Blasenkarzinoms.


2019 ◽  
Vol 411 (12) ◽  
pp. 2569-2576 ◽  
Author(s):  
Malin Källsten ◽  
Matthijs Pijnappel ◽  
Rafael Hartmann ◽  
Fredrik Lehmann ◽  
Lucia Kovac ◽  
...  

2020 ◽  
Vol 12 ◽  
pp. 175883592092006
Author(s):  
Hang-Ping Yao ◽  
Sreedhar Reddy Suthe ◽  
Xiang-Min Tong ◽  
Ming-Hai Wang

The recepteur d’origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody–drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.


Antibodies ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Iftekhar Mahmood

Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.


Sign in / Sign up

Export Citation Format

Share Document