scholarly journals Effect of climate change on surface ozone over North America, Europe, and East Asia

2016 ◽  
Vol 43 (7) ◽  
pp. 3509-3518 ◽  
Author(s):  
Jordan L. Schnell ◽  
Michael J. Prather ◽  
Beatrice Josse ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
...  
Elem Sci Anth ◽  
2017 ◽  
Vol 5 (0) ◽  
pp. 50 ◽  
Author(s):  
Kai-Lan Chang ◽  
Irina Petropavlovskikh ◽  
Owen R. Copper ◽  
Martin G. Schultz ◽  
Tao Wang

2019 ◽  
Vol 19 (19) ◽  
pp. 12495-12514 ◽  
Author(s):  
Han Han ◽  
Jane Liu ◽  
Huiling Yuan ◽  
Tijian Wang ◽  
Bingliang Zhuang ◽  
...  

Abstract. Tropospheric ozone in East Asia is influenced by the transport of ozone from foreign regions around the world. However, the magnitudes and variations in such influences remain unclear. This study was performed to investigate the influences using a global chemical transport model, GEOS-Chem, through the tagged ozone and emission perturbation simulations. The results show that foreign ozone is transported to East Asia (20–60∘ N, 95–150∘ E) mainly through the middle and upper troposphere. In East Asia, the influence of foreign ozone increases rapidly with altitude. In the middle and upper troposphere, the regional mean concentrations of foreign ozone range from 32 to 65 ppbv, being 0.8–4.8 times higher than its native counterpart (11–18 ppbv). Annually, ∼60 % of foreign ozone in the East Asian middle and upper troposphere comes from North America (5–13 ppbv) and Europe (5–7 ppbv), as well as from foreign oceanic regions (9–21 ppbv). Over the East Asian tropospheric columns, foreign ozone appears most in spring when ozone concentrations in the foreign regions are high and the westerlies are strong and least in summer when the South Asian High blocks eastward foreign ozone from reaching East Asia south of 35∘ N. At the East Asian surface, the annual mean of foreign ozone concentrations is ∼22.2 ppbv, which is comparable to its native counterpart of ∼20.4 ppbv. In the meantime, the annual mean of anthropogenic ozone concentrations from foreign regions is ∼4.7 ppbv, half of which comes from North America (1.3 ppbv) and Europe (1.0 ppbv). Seasonally, foreign ozone concentrations at the East Asian surface are highest in winter (27.1 ppbv) and lowest in summer (16.5 ppbv). This strong seasonality is largely modulated by the East Asian monsoon (EAM) via its influence on vertical motion. The large-scale subsidence prevailing during the East Asian winter monsoon (EAWM) favours the downdraft of foreign ozone to the surface, while widespread convection in the East Asian summer monsoon (EASM) blocks such transport. Interannually, the variation in foreign ozone at the East Asian surface is found to be closely related to the intensity of the EAM. Specifically, the stronger the EAWM is in a winter, the more ozone from North America and Europe reaches the East Asian surface because of the stronger subsidence behind the East Asian trough. In summer, ozone from South and South-east Asia is reduced in strong EASM years due to weakened south-westerly monsoon winds. This study suggests substantial foreign influences on ozone at the East Asian surface and in its tropospheric columns. It also underscores the importance of the EAM in the seasonal and interannual variations in foreign influences on surface ozone in East Asia.


2015 ◽  
Vol 15 (10) ◽  
pp. 14111-14139 ◽  
Author(s):  
Y. Fu ◽  
A. P. K. Tai

Abstract. Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions over the past 30 years (1980–2010) in East Asia. We find that over 1980–2010 land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Over the same period, climate change alone could lead to an increase in summertime ozone by 2–10 ppbv in most regions of East Asia and ~6000 more premature deaths annually, mostly attributable to warming. The combined impacts (−2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone-vegetation sensitivity studies to date have been conducted.


2015 ◽  
Vol 15 (17) ◽  
pp. 10093-10106 ◽  
Author(s):  
Y. Fu ◽  
A. P. K. Tai

Abstract. Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions between the 5-year periods 1981–1985 and 2007–2011 in East Asia. We find that between these two periods land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~ 2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Climate change alone could lead to an increase in summertime ozone by 2–10 ppbv in most regions of East Asia and ~ 6000 more premature deaths annually, mostly attributable to warming. The combined impacts (−2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than on isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone-vegetation sensitivity studies to date have been conducted.


2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


2021 ◽  
Vol 32 ◽  
pp. 100309
Author(s):  
Nobuhito Mori ◽  
Tetsuya Takemi ◽  
Yasuto Tachikawa ◽  
Hirokazu Tatano ◽  
Tomoya Shimura ◽  
...  

2016 ◽  
Vol 3 (1-2) ◽  
pp. 79-96 ◽  
Author(s):  
Gunwoo Yoon ◽  
Patrick T. Vargas

In the present research we argue that avatars, as identity containers, can mirror people’s self-concepts. Research in cultural psychology suggests that East Asians tend to be more tolerant of contradictions and that they more easily adjust their self-concepts in accordance with changing contexts compared to North Americans (see Heine 2001). We therefore assume that preferred forms of avatars among East Asians and North Americans are different because of this self-concept variability across cultures. We conducted a quasi-experiment to explore how people in the two cultures differently evaluate two forms of avatars, human-like and cartoon-like avatars, in terms of likeability and preference. We found that East Asians rated cartoon-like avatars more favourably than North Americans. Moreover, compared to North Americans, East Asians preferred cartoon-like avatars to human-like avatars for their hypothetical avatars to play games. We conclude by discussing implications for future research.


Sign in / Sign up

Export Citation Format

Share Document