scholarly journals Global warming projection in the 21st century based on an observational data-driven model

2016 ◽  
Vol 43 (20) ◽  
pp. 10,947-10,954 ◽  
Author(s):  
Xubin Zeng ◽  
Kerrie Geil
2018 ◽  
Vol 482 (3) ◽  
pp. 315-318
Author(s):  
E. Volodin ◽  
◽  
A. Gritsun ◽  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


1998 ◽  
Vol 6 ◽  
pp. 187-192
Author(s):  
Hiromaru HIRAKUCHI ◽  
Kohki MARUYAMA ◽  
Jun'ichi TSUTSUI ◽  
Norikazu NAKASHIKI

2011 ◽  
Vol 438 (1) ◽  
pp. 681-685 ◽  
Author(s):  
A. A. Velichko ◽  
O. K. Borisova
Keyword(s):  

2018 ◽  
Vol 482 (1) ◽  
pp. 1221-1224 ◽  
Author(s):  
E. M. Volodin ◽  
A. S. Gritsun
Keyword(s):  

2021 ◽  
Author(s):  
Naihui Zang ◽  
Junhu Zhao ◽  
Pengcheng Yan ◽  
Han Zhang ◽  
Shankai Tang ◽  
...  

Abstract Persistent extreme heat events (PEHEs) exert a more negative impact on society, including agriculture, plant phenology, power production and human health, compared to general EHEs. The temporal and spatial characteristics of summer PEHEs in eastern China were analysed based on a daily maximum temperature dataset from 759 stations over the period of 1961–2018. The results show the following: Persistent distributions of PEHEs show that they are characterized by an exponential decay with a drop in the decay rate. In terms of spatial distribution, there is an apparent regional difference in the duration of PEHEs. North China is dominated by multi-frequency and short-duration EHEs, while South China is the opposite. PEHEs in North China and the Huanghuai region mainly occur in June-July but mostly in July and August in South China. Strongly responding to global warming, the frequency and duration of PEHEs in North China have increased since the 1990s. However, the frequency of PEHEs in North China and the Huanghuai region has shown opposite trends in June-July since the beginning of the 21st century. Affected by the atmospheric circulations, the regional differences in PEHE frequency are also apparent. Since the beginning of the 21st century, the PEHEs in North China and the Huanghuai area have shown an increasing trend in August. The short-term PEHEs in the middle and lower reaches of the Yangtze River and South China increased rapidly in the 2000s, while long-term PEHEs increased in the 2010s. This study implies that attention should be paid to not only the frequency of EH days but also to the persistence of EHE which is a key characteristic of damaging EH.


2021 ◽  
pp. 1-40

Abstract There are heated debates on the existence of the global warming slowdown during the early 21st century. Although efforts have been made to clarify or reconcile the controversy over the issue, it is not explicitly addressed, restricting the understanding of global temperature change particularly under the background of increasing greenhouse-gas concentrations. Here, using extensive temperature datasets, we comprehensively reexamine the existence of the slowdown under all existing definitions during all decadal-scale periods spanning 1990-2017. Results show that the short-term linear-trend dependent definitions of slowdown make its identification severely suffer from the period selection bias, which largely explains the controversy over its existence. Also, the controversy is further aggravated by the significant impacts of the differences between various datasets on the recent temperature trend and the different baselines for measuring slowdown prescribed by various definitions. However, when the focus is shifted from specific periods to the probability of slowdown events, we find the probability is significantly higher in the 2000s than in the 1990s, regardless of which definition and dataset are adopted. This supports a slowdown during the early 21st century relative to the warming surge in the late 20th century, despite higher greenhouse-gas concentrations. Furthermore, we demonstrate that this decadal-scale slowdown is not incompatible with the centennial-scale anthropogenic warming trend, which has been accelerating since 1850 and never pauses or slows. This work partly reconciles the controversy over the existence of the warming slowdown and the discrepancy between the slowdown and anthropogenic warming.


Sign in / Sign up

Export Citation Format

Share Document