scholarly journals Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

2017 ◽  
Vol 44 (9) ◽  
pp. 4224-4232 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
Ebenezer S. Nyadjro
2017 ◽  
Vol 30 (11) ◽  
pp. 4299-4316 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen

Abstract A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.


2019 ◽  
Vol 76 (7) ◽  
pp. 2023-2042 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen ◽  
Matthew R. Igel

Abstract The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.


2017 ◽  
Author(s):  
Yair De-Leon ◽  
Nathan Paldor

Abstract. Using 20 years of accurately calibrated, high resolution, observations of Sea Surface Height Anomalies (SSHA) by satellite ‎borne altimeters we show that in the Indian Ocean south of the Australian coast the low frequency variations of SSHA are ‎dominated by westward propagating, trapped, i.e. non-harmonic, planetary waves. Our results demonstrate that the ‎meridional-dependent amplitudes of the SSHA are large only within a few degrees of latitude next to the South-Australian ‎coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the ‎amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signals is analyzed by ‎employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely ‎between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The ‎estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of ‎harmonic Rossby (Planetary) waves by 140 % to 200 %. In contrast, the theory of trapped Rossby (Planetary) waves in a ‎domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase ‎speeds.‎


2009 ◽  
Vol 39 (5) ◽  
pp. 1115-1132 ◽  
Author(s):  
Dongliang Yuan ◽  
Hailong Liu

Abstract Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.


2016 ◽  
Vol 29 (4) ◽  
pp. 1461-1476 ◽  
Author(s):  
Pradipta Parhi ◽  
Alessandra Giannini ◽  
Pierre Gentine ◽  
Upmanu Lall

Abstract The evolution of El Niño can be separated into two phases—namely, growth and mature—depending on whether the regional sea surface temperature has adjusted to the tropospheric warming in the remote tropics (tropical regions away from the central and eastern tropical Pacific Ocean). The western Sahel’s main rainy season (July–September) is shown to be affected by the growth phase of El Niño through (i) a lack of neighboring North Atlantic sea surface warming, (ii) an absence of an atmospheric column water vapor anomaly over the North Atlantic and western Sahel, and (iii) higher atmospheric vertical stability over the western Sahel, resulting in the suppression of mean seasonal rainfall as well as number of wet days. In contrast, the short rainy season (October–December) of tropical eastern Africa is impacted by the mature phase of El Niño through (i) neighboring Indian Ocean sea surface warming, (ii) positive column water vapor anomalies over the Indian Ocean and tropical eastern Africa, and (iii) higher atmospheric vertical instability over tropical eastern Africa, leading to an increase in the mean seasonal rainfall as well as in the number of wet days. While the modulation of the frequency of wet days and seasonal mean accumulation is statistically significant, daily rainfall intensity (for days with rainfall > 1 mm day−1), whether mean, median, or extreme, does not show a significant response in either region. Hence, the variability in seasonal mean rainfall that can be attributed to the El Niño–Southern Oscillation phenomenon in both regions is likely due to changes in the frequency of rainfall.


2008 ◽  
Vol 35 (3) ◽  
Author(s):  
David M. Heffner ◽  
Bulusu Subrahmanyam ◽  
Jay F. Shriver

Ocean Science ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Yair De-Leon ◽  
Nathan Paldor

Abstract. Using 20 years of accurately calibrated, high-resolution observations of sea surface height anomalies (SSHAs) by satellite borne altimeters, we show that in the Indian Ocean south of the Australian coast the low-frequency variations of SSHAs are dominated by westward propagating, trapped, i.e., non-harmonic, Rossby (Planetary) waves. Our results demonstrate that the meridional-dependent amplitudes of the SSHAs are large only within a few degrees of latitude next to the southern Australian coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signal is analyzed by employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of harmonic Rossby (planetary) waves by 140 to 200 % (which was also reported in previous studies). In contrast, the theory of trapped Rossby (planetary) waves in a domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase speeds in the study area.


2005 ◽  
Vol 18 (10) ◽  
pp. 1449-1468 ◽  
Author(s):  
Wenju Cai ◽  
Harry H. Hendon ◽  
Gary Meyers

Abstract Coupled ocean–atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño–Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra–Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest–southeast tilting Sumatra–Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model’s ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra–Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.


Sign in / Sign up

Export Citation Format

Share Document