2015 ◽  
Vol 821-823 ◽  
pp. 528-532 ◽  
Author(s):  
Dirk Lewke ◽  
Karl Otto Dohnke ◽  
Hans Ulrich Zühlke ◽  
Mercedes Cerezuela Barret ◽  
Martin Schellenberger ◽  
...  

One challenge for volume manufacturing of 4H-SiC devices is the state-of-the-art wafer dicing technology – the mechanical blade dicing which suffers from high tool wear and low feed rates. In this paper we discuss Thermal Laser Separation (TLS) as a novel dicing technology for large scale production of SiC devices. We compare the latest TLS experimental data resulting from fully processed 4H-SiC wafers with results obtained by mechanical dicing technology. Especially typical product relevant features like process control monitoring (PCM) structures and backside metallization, quality of diced SiC-devices as well as productivity are considered. It could be shown that with feed rates up to two orders of magnitude higher than state-of-the-art, no tool wear and high quality of diced chips, TLS has a very promising potential to fulfill the demands of volume manufacturing of 4H-SiC devices.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000995-001015
Author(s):  
Tom Strothmann

The potential of Thermo compression Bonding (TCB) has been widely discussed for several years, but it has not previously achieved widespread production use. TCB has now begun the transition to an accepted high volume manufacturing technology driven primarily by the memory market, but with wider adoption close for non-memory applications. Several key factors have enabled this transition, including advanced TCB equipment with higher UPH for cost reduction and advanced methods of inline process control. The unique requirements of TCB demand absolute process control, simultaneous data logging capability for multiple key factors in the process and portability of the process between tools. This introduces a level of sophistication that has not previously been required for BE assembly processes. This presentation will review state of the art TCB technology and the fundamental equipment requirements to support the transition to HVM.


Sign in / Sign up

Export Citation Format

Share Document