The Use of Accurate Mass, Isotope Ratios, and MS/MS for the Analysis of PPCPs in Water

Author(s):  
Michael C. Zumwalt
Keyword(s):  
2017 ◽  
Vol 51 (6) ◽  
pp. 537-550
Author(s):  
Tasuku Akagi ◽  
Tomohiro Miura ◽  
Rie Takada ◽  
Kazuo Watanabe

2019 ◽  
Author(s):  
Buddhika Dorakumbura ◽  
Francesco Busetti ◽  
Simon Lewis

<p>Transformation of squalene and its by-products in fingermarks over time under different storage conditions (light, dark and underwater) was examined through ultrahigh-pressure liquid chromatography high resolution accurate mass Orbitrap™ mass spectrometry. Complications of assessing fingermark compositional variation over time using multiple samples with varying initial compositions were elucidated and a more rational approach was successfully demonstrated. Squalene was detected in all fresh natural fingermarks and the amount ranged between 0.20 to 11.32 μg/5 fingertips. A notable difference in the transformation of squalene was observed with different storage conditions, where a dark aquatic environment accelerated degradation of squalene compared to dark but dry conditions. Squalene monohydroperoxide was extremely short-lived in natural deposits while the amount of squalene epoxide was still increasing relative to the initial amount, after ageing under dark and aquatic conditions for up to 7 days. Some oxidation by-products of cholesterol were also tentatively identified, which exhibited a growth over time against their initial concentration under any of the storage condition tested. These by-products, therefore, show potential as biomarkers for targeted visualisation of aged deposits.</p>


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


2015 ◽  
pp. 40-43 ◽  
Author(s):  
Andreas G. Degenhardt

The isotope ratios of water, organic matter and micronutrients from food are dependent on the circumstances and sites of their origin and production. Analytical methods, based on mass spectrometry, are established for routine determination of isotopes. Differentiation between metabolic pathways of C3 and C4 plants is realizable by determination 13C/12C ratios which can distinguish and identify sucrose from pure beet (Beta vulgaris) and pure cane (Saccharum officinarum). Influenced by the worldwide hydrological cycle the isotope ratios of 2H/1H and 18O/16O vary systematically, the variations give information about geographical origin. The exemplarily determination of authenticity is demonstrated by using mass spectrometric isotope ratio evaluation for identification of plant source and geographical origin with the help of selected sugar samples with known origin.


Sign in / Sign up

Export Citation Format

Share Document