Harnessing Optical Label-Free on Microtiter Plates for Lead Finding: From Binding to Phenotypes

Author(s):  
Julio Martin
2019 ◽  
Author(s):  
Jakob Gierten ◽  
Christian Pylatiuk ◽  
Omar Hammouda ◽  
Christian Schock ◽  
Johannes Stegmaier ◽  
...  

AbstractRationaleAccurate and efficient quantification of heartbeats in small fish models is an important readout to study cardiovascular biology, disease states and pharmacology at large scale. However, dependence on anesthesia, laborious sample orientation or requirement for fluorescent reporters have hampered the establishment of high-throughput heartbeat analysis.ObjectiveTo overcome these limitations, we aimed to develop a high-throughput assay with automated heart rate scoring in medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos under physiological conditions designed for genetic screens and drug discovery and validation.Methods and ResultsWe established an efficient screening assay employing automated label-free heart rate determination of randomly oriented, non-anesthetized specimen in microtiter plates. Automatically acquired bright-field data feeds into an easy-to-use HeartBeat software, a MATLAB algorithm with graphical user interface developed for automated quantification of heart rate and rhythm. Sensitivity of the assay and algorithm was demonstrated by profiling heart rates during entire embryonic development. Our analysis pipeline revealed acute temperature changes triggering rapid adaption of heart rates, which has implications for standardization of experimental layout. The approach is scalable and allows scoring of multiple embryos per well resulting in a throughput of >500 embryos per 96-well plate. In a proof of principle screen for compound testing, our assay captured concentration-dependent effects of nifedipine and terfenadine over time.ConclusionA novel workflow and HeartBeat software provide efficient means for reliable and direct quantification of heart rate and rhythm of small fish in a physiological environment. Importantly, confounding factors such as anesthetics or laborious mounting are eliminated. We provide detailed profiles of embryonic heart rate dynamics in medaka and zebrafish as reference for future assay development. Ease of sample handling, automated imaging, physiological conditions and software-assisted analysis now facilitate various large-scale applications ranging from phenotypic screening, interrogation of gene functions to cardiovascular drug development pipelines.


Author(s):  
Jane E. Ramberg ◽  
Shigeto Tohma ◽  
Peter E. Lipsky

Intercellular adhesion molecule (ICAM-1) appears to be a ligand for LFA-1 dependent adhesion in T cell mediated cytotoxcity. It is found on cells of both hematopoietic and non-hematopoietic origin. While observing the activity of ICAM-1 on the surfaces of interacting T and B cells, we found that we could successfully carry out a pre-embedding double staining procedure utilizing both colloidal gold and peroxidase conjugated reagents.On 24-well microtiter plates, mitomycin-treated T4 cells were stimulated with 64.1 (anti-CD3) for one hour before the addition, in some instances, of B cells. Following a 12-48 hour incubation at 38°C, the cells were washed and then immunostained with a colloidal gold conjugated RFB-4 (anti-CD22); biotinylated R6.5 (anti-ICAM-1); followed by streptavidin/peroxidase. This method allowed us to observe two different antigens without concern about possible cross-reaction of reagents. Because we suspected ICAM-1 and R6.5 were sensitive to fixation, we tried varying concentrations of fresh paraformaldehyde before R6.5, after R6.5 and after streptavidin/peroxidase. All immunostaining and washing was done on ice with ice cold reagents.


2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


1994 ◽  
Vol 71 (01) ◽  
pp. 129-133 ◽  
Author(s):  
P J Declerck ◽  
S Vanderschueren ◽  
J Billiet ◽  
H Moreau ◽  
D Collen

SummaryStreptokinase (SK) is a routinely used thrombolytic agent but it is immunogenic and allergenic; staphylokinase (STA) is a potential alternative agent which is under early clinical evaluation. The comparative prevalence of antibodies against recombinant STA (STAR) and against SK was studied in healthy subjects and their induction with intravenous administration in small groups of patients.Enzyme-linked immunosorbent assays, using microtiter plates coated with STAR or SK and calibration with affinospecific human antibodies, revealed 2.1 to 65 μg/ml (median 11 μg/ml) anti-STAR antibodies and 0.9 to 370 μg/ml (median 18 μg/ml) anti-SK antibodies (p <0.001 vs anti-STAR antibodies) in plasma from 100 blood donors, with corresponding values of 0.6 to 100 μg/ml (median 7.1 μg/ml) and 0.4 to 120 μg/ml (median 7.3 μg/ml), respectively, in 104 patients with angina pectoris. Three out of 17 patients with Staphylococcus aureus bacteremia had significantly increased anti-STAR antibody levels (150, 75 and 75 μg/ml), and STAR neutralizing activities (2.2, 3.6 and 4.1 μg STAR neutralized per ml plasma, respectively). In 6 patients with acute myocardial infarction, given 10 mg STAR intravenously over 30 min, median anti-STAR antibody levels were 3.5 μg/ml at baseline, 2.9 μg/ml at 6 to 8 days and 1.2 μg/ml at 2 to 9 weeks, with median corresponding titers of STAR neutralizing activity at 2 to 9 weeks of 42 μg/ml plasma. Conversely, in 5 patients treated with 1,500,000 units SK over 60 min, median anti-SK antibodies increased from 2.9 μg/ml at baseline to 360 μg/ml at 5 to 10 days, with corresponding median SK neutralizing activities of 13 μg/ml. Antibodies against STAR did not cross-react with SK and vice versa.Plasma from human subjects contains low levels of circulating antibodies against recombinant staphylokinase, and intravenous administration of this compound boosts antibody titers. These antibodies do however not cross-react with streptokinase, whereby the use of these two immunogenic thrombolytic agents would not be mutually exclusive.


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


Sign in / Sign up

Export Citation Format

Share Document