A Herbicide Defense Trait That Is Distinct from Resistance: The Evolutionary Ecology and Genomics of Herbicide Tolerance

2009 ◽  
pp. 163-175 ◽  
Author(s):  
Regina S. Baucom
Author(s):  
D.W.R. White

Cell culture and genetic engineering techniques can be used to develop improved pasture plants. To utilise these methods we have developed procedures for regenerating plants from tissue cultures of perennial ryegrass and white clover. In both, the plant genotype influences regeneration capacity. There was significant genetic variation among regenerated perennial ryegrass plants in a wide range of characteristics. Most of the regenerants were resIstant to crown rust and this trait was highly heritable. This rust resistance is being used to breed a new ryegrass cultivar. A system for introducing cloned genes into white clover is described. This capability is bemg used to incorporate genes with the potential to improve nutritional quality and pest resistance. Other possibilities for engineering genetic improvements in white clover, genes conferring herbicide tolerance and resistance to white clover mosaic virus, are briefly outlined. Keywords: Lolium perenne, Trifolium repens, cell culture, somaclonal variation, crown rust resistance, transformation, cloned genes, nutritional quality, proteinase inhibitors, Bt toxins, pest resistance, WCMV viral cross-protection, herbicide tolerance, Agrobacterium, Bacillus thuringenisis.


2020 ◽  
Vol 1 (1) ◽  
pp. 36-41
Author(s):  
Gaurav Ranabhat ◽  
Ashmita Dhakal ◽  
Saurav Ranabhat ◽  
Ananta Dhakal ◽  
Rakshya Aryal

Modern biotechnology enables an organism to produce a totally new product which the organism does not or cannot produce normally through the incorporation of the technology of ‘Genetic engineering’. Biotechnology shows its technical merits and new development prospects in breeding of new plants varieties with high and stable yield, good quality, as well as stress tolerance and resistance. Some of the most prevailing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops incorporated with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Plant biotechnology has gained importance in the recent past for increasing the quality and quantity of agricultural, horticultural, ornamental plants, and in manipulating the plants for improved agronomic performance. Recent developments in the genome sequencing will have far reaching implications for future agriculture. From this study, we can know that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the future benefit of human being.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517a-517
Author(s):  
Eric L. Zeldin ◽  
Rodney A. Serres ◽  
Brent H. McCown

`Stevens' cranberry was genetically engineered to confer tolerance to the broad spectrum herbicide glufosinate. Initially, herbicide tolerance was verified by spraying greenhouse plants with the commercial formulation Liberty. Although one transformant showed significant tolerance, the tolerance level was below that required to kill goldenrod, a common weed of cranberry beds. This transformant was propagated and the plants established outdoors in a coldframe, yielding a growth form more typical of field-grown plants than that of greenhouse-grown plants. These plants, as well as untransformed cranberry and goldenrod plants, were sprayed with various levels of the herbicide. The transformed plants were not killed at glufosinate concentrations up to 1000 ppm, although delayed growth did occur. Some runner tip injury was observed at 500 ppm as well as widespread shoot tip death at higher levels. The above-ground parts of goldenrod plants were killed at 400 ppm with significant injury at 200 ppm. Untransformed cranberry plants were killed at 300 ppm and had extensive tip death even at 100 ppm. Transformed cranberry plants with confirmed “field” tolerance were re-established in the greenhouse and new vegetative growth was forced. When these plants were sprayed with glufosinate, significant shoot tip injury was observed at levels as low as 100 ppm. The degree of herbicide tolerance of transformed cranberry appears to be modulated by the growth environment, which may affect the expression of the inserted genes or the physiological sensitivity of the impacted tissues.


Author(s):  
Christer Brönmark ◽  
Lars-Anders Hansson

The Biology of Lakes and Ponds focuses on the interactions between the abiotic frame, such as turbulence, temperature, pH and nutrients, and the organisms, including interactions with and among organisms at the individual, population and community level. The book fills this niche between traditional limnology and evolutionary ecology by focusing on physiological, morphological and behavioural adaptations among organisms to abiotic and biotic factors and how interactions between biotic processes and abiotic constraints determine the structure and dynamics of lake and pond systems. In addition, the book describes and analyses the causes and consequences of human activities on freshwater organisms and ecosystems and covers longstanding environmental threats, such as eutrophication and acidification, as well as novel threats, such as biodiversity loss, use of everyday chemicals and global climate change. However, also signs of improvement and the possibilities to restore degraded ecosystems are discussed and provide hope for future generations.


Author(s):  
Graeme D. Ruxton ◽  
William L. Allen ◽  
Thomas N. Sherratt ◽  
Michael P. Speed

In 2004, the first edition of ‘Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry’ by Ruxton et al. was published. The book aimed to provide a systematic and up-to-date review and synthesis of widespread anti-predator defences. In it, we focussed on sensorially mediated defences and the many factors that underpin these adaptations, aiming to set out the state-of-understanding in the fascinating world of anti-predator adaptations, and highlight which topics within the field seem most ripe for further investigation....


2019 ◽  
Vol 156 ◽  
pp. 9-28 ◽  
Author(s):  
Tim R. Hawkes ◽  
Michael P. Langford ◽  
Russell Viner ◽  
Rachael E. Blain ◽  
Fiona M. Callaghan ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


2021 ◽  
Vol 108 (2) ◽  
pp. 216-235 ◽  
Author(s):  
Luis E. Eguiarte ◽  
Ofelia A. Jiménez Barrón ◽  
Erika Aguirre‐Planter ◽  
Enrique Scheinvar ◽  
Niza Gámez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document