Friction Consolidation of Aluminum Chips

Author(s):  
W. Tang ◽  
A. P. Reynolds
Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 663
Author(s):  
Thomas Borgert ◽  
Werner Homberg

Modern forming processes often allow today the efficient production of complex parts. In order to increase the sustainability of forming processes it would be favorable if the forming of workpieces becomes possible using production waste. At the Chair of Forming and Machining Technology of the Paderborn University (LUF) research is presently conducted with the overall goal to produce workpieces directly from secondary aluminum (e.g., powder and chips). Therefore, friction-based forming processes like friction spinning (or cognate processes) are used due to their high efficiency. As a pre-step, the production of semi-finished parts was the subject of accorded research work at the LUF. Therefore, a friction-based hot extrusion process was used for the full recycling or rework of aluminum chips into profiles. Investigations of the recycled semi-finished products show that they are comparable to conventionally produced semi-finished products in terms of dimensional stability and shape accuracy. An analysis of the mechanical properties of hardness and tensile strength shows that a final product with good and homogeneously distributed properties can be produced. Furthermore, significant correlations to the friction spinning process could be found that are useful for the above-mentioned direct part production from secondary aluminum.


2014 ◽  
Vol 45 (4) ◽  
pp. 1484-1489 ◽  
Author(s):  
Reza Abdi Behnagh ◽  
Ramezanali Mahdavinejad ◽  
Amin Yavari ◽  
Masoud Abdollahi ◽  
Morteza Narvan

2018 ◽  
Vol 82 (2) ◽  
pp. 33-38 ◽  
Author(s):  
Yoshihiko Hangai ◽  
Ryusei Kobayashi ◽  
Ryosuke Suzuki ◽  
Masaaki Matsubara ◽  
Nobuhiro Yoshikawa

Metallurgist ◽  
1979 ◽  
Vol 23 (11) ◽  
pp. 781-782
Author(s):  
A. N. Kalashnik ◽  
V. Ya. Kol'tsova ◽  
V. A. Popov ◽  
A. A. Reznyakov ◽  
V. A. Serbin ◽  
...  
Keyword(s):  

2020 ◽  
Vol 975 ◽  
pp. 229-234
Author(s):  
Mohammed H. Rady ◽  
Mohammad Sukri Mustapa ◽  
Shazarel Shamsudin ◽  
Mohd Amri Lajis ◽  
Mohd Idrus Mohd Masirin ◽  
...  

Produced Profiles by direct recycling of aluminum chips in hot extrusion process were achieved by temperature related parameters using preheating temperature 450 °C, 500 °C, and 550 °C for duration 1 hour, 2 hours, and 3 hours preheating time. By using Design of Experiments (DOE) procedure with full factorial design and three center points analysis, the results showed that the preheating temperature factor is more important to be controlled rather than the preheating duration and increase of temperature conducted to the high tensile strength. The profiles extruded at 550 °C and 3 hours’ duration had obtained the optimum condition to get the maximum tensile strength. The influence of parameters of hot extrusion process on fracture surfaces of the recycled samples was also investigated and discussed.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 660 ◽  
Author(s):  
Jure Krolo ◽  
Branimir Lela ◽  
Ivana Dumanić ◽  
Franjo Kozina

The main aim of this paper is to present an environmentally friendly method for aluminum recycling. Development of new recycling technologies in order to increase scrap reuse potential and CO2 emission savings are of the main importance for aluminum circular economy. In this paper, aluminum chips waste was recycled without any remelting phase in order to increase energy and material savings. The presented process is usually called solid state recycling or direct recycling. Solid state recycling process consists of chips cleaning, cold pre-compaction and hot direct extrusion followed by a combination of equal channel angular pressing (ECAP) and heat treatment. Influence of holding time during solid solution treatment and both artificial aging time and temperature on mechanical properties of the recycled EN AW 6082 aluminum chips were investigated. A comprehensive number of the experiments were performed utilizing design of experiments approach and response surface methodology. Regression models were developed for describe the influence of heat treatment parameters for presented solid state recycling process on mechanical properties of the recycled samples. Utilizing novel procedure high quality recycled samples were obtained with mechanical properties comparable with commercially produced EN AW 6082 aluminum alloy in T6 temper condition. Metallographic analysis of the recycled samples was also performed.


2007 ◽  
Vol 42 (11) ◽  
pp. 1504-1513 ◽  
Author(s):  
Vadim Shmanai ◽  
Sergey Gontarev ◽  
Simone K. Frey ◽  
Florian J. Schweigert

Sign in / Sign up

Export Citation Format

Share Document