Influence of Crystallographic Orientation on Creep Behavior of Aluminized Ni-Base Single Crystal Superalloys

2012 ◽  
pp. 311-320
Author(s):  
F. H. Latief ◽  
K. Kakehi ◽  
H. Murakami ◽  
K. Kasai
Author(s):  
Vladimir Yu. Sadovoy ◽  
Vladimir D. Blank ◽  
Sergey A. Terentiev ◽  
Dmitriy V. Teteruk ◽  
Sergey Yu. Troschiev

Dependence of secondary electron emission coefficient on the chosen crystallographic orientation for a synthetic single crystal diamond of type IIb, grown up by method of a temperature gradient, was investigated. The type IIb of single crystal diamond was chosen because of wide applicability in different areas of microelectronics and the semiconductor properties. Quantitative measurements of secondary electron emission coefficients with energy of primary beam about 7 keV and above for various crystallographic orientations was carried out: the highest coefficient of secondary electronic emission are recorded for the direction (100), cubic sector, and also in intergrowth area that is confirmed by a picture of distribution of the luminescence intensity for various sectors of a single crystal received by means of true secondary electrons detector of scanning electron microscope. The results for (100) area are outstanding: 8.18 at primary beam energy of 7 keV, 10.13 at 10 keV, 49.78 at 30 keV. The results for intergrowth area are similar: 10.10 at primary beam energy of 7 keV, 13.56 at 10 keV, 64.41 at 30 keV. The crystallographic directions (111) have shown secondary electron emission coefficient 4-6 times lower in comparison with (100) and intergrowth area: 2.54 on the average at primary beam energy of 7 keV, 2.75 at 10 keV, 10.03 at 30 keV. The non-standard behavior of secondary electron emission coefficient at the high energy primary beam for all orientations of single crystal diamond is shown: increase in secondary electron emission coefficient with increase in energy of primary beam. At the moment the reason of such behavior is not clear up to the end and since this fact causes a great interest of researchers, considerably expands applicability of the existing devices and detectors due to replacement of a functional element on diamond one, and also opens big opportunities for formation of new field of microelectronics, this facts demand further in-depth study by means of various methods of the structural and surface analysis.


2020 ◽  
Vol 170 ◽  
pp. 108643 ◽  
Author(s):  
Yang Yanqiu ◽  
Wen Zhixun ◽  
Zhao Yanchao ◽  
Wang Jiapo ◽  
Li Zhenwei ◽  
...  

1984 ◽  
Vol 39 ◽  
Author(s):  
P. R. Strutt ◽  
B. H. Kear

ABSTRACTThis paper examines the fundamentals of deformation behavior in ordered y′ (Ni3Al), β (NiAl) and β′ (Ni2AITi) phases, and specific two phase y/y′ and B/B′ alloys. The relative creep strengths of these ordered nickel-base alloys are discussed. Differences in creep behavior are explained in terms of the effects of temperature, crystallographic orientation and alloying on creep deformation mode. In particular, it is shown that trace additions of boron and carbon to y/y′ alloys, or deviations from stoichiometry in β′ -type alloys can exert a strong influence on creep behavior.


Sign in / Sign up

Export Citation Format

Share Document