THEORY OF NEAR SURFACE TURBULENCE APPLIED TO WIND SPEED PROFILES, DRY DEPOSITION, AIR-WATER EXCHANGE, AND CANOPY EFFECTS

2013 ◽  
pp. 607-628
2019 ◽  
Author(s):  
Sebastian Landwehr ◽  
Iris Thurnherr ◽  
Nicolas Cassar ◽  
Martin Gysel-Beer ◽  
Julia Schmale

Abstract. At sea, wind forcing is responsible for the formation and development of surface waves and represents an important source of near surface turbulence. Therefore, processes related to near surface turbulence and wave breaking, such as sea spray emission and air-sea gas exchange are often parametrised with wind speed. Shipborne wind speed measurements thus provide highly relevant observations. They can, however, be compromised by flow distortion due to the ship's structure and objects nearby the anemometer that modify the airflow, leading to a deflection of the apparent wind direction and positive or negative acceleration of the apparent wind speed. The resulting errors in the estimated true wind speed can be greatly magnified at low wind speeds. For some research ships, correction factors have been derived from computational fluid dynamic models or through direct comparison with wind speed measurements from buoys. These correction factors can, however, loose their validity due to changes of the structures nearby the anemometer and thus require frequent re-evaluation, which is costly in either computational power or ship time. Here we evaluate if global weather forecast model data can be used to quantify the flow distortion bias in shipborne wind speed measurements. The method is tested on data from the Antarctic Circumnavigation Expedition (ACE) on board the R/V Akademik Tryoshnikov, which are compared with ERA-5 reanalysis wind speeds. We find that, depending on the relative wind direction, the relative wind speed and direction measurements are biased by −37 % to +20 % and −13° to +15°, respectively. The resulting error in the true wind speed is +11 % on average but ranges from −5 % to +40 % (5th and 95th percentile). After applying the bias correction, the uncertainty in the true wind speed is reduced to 5 % and depends mainly on the average accuracy of the ERA-5 data over the period of the experiment. The obvious drawback of this approach is the potential intrusion of model bias in the correction factors. We show that this problem can be somewhat mediated when the error propagation in the true wind correction is accounted for and used to weight the observations. We discuss the potential caveats and limitations of this approach and conclude that it can be used to quantify flow distortion bias for ships that operate on a global scale. The method can also be valuable to verify Computational Fluid Dynamic studies of airflow distortion on research vessels.


2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


2012 ◽  
Vol 58 (209) ◽  
pp. 529-539 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractDuring the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


2012 ◽  
Vol 12 (10) ◽  
pp. 4607-4617 ◽  
Author(s):  
M. D. Rowe ◽  
J. A. Perlinger

Abstract. Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT) substances are frequently estimated using the Whitman two-film (W2F) method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR) method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE) model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km) in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs.


2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


2016 ◽  
Author(s):  
Karin Haglund ◽  
Björn Claremar ◽  
Anna Rutgersson

Abstract. The shipping sector contributes significantly to increasing emissions of air pollutants. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and deposition of sulphur, nitrogen and particulate matter from the international maritime sector in the Baltic Sea and the North Sea have been made for the years 2009 to 2013. In some areas in the Baltic Sea region the contribution of sulphur dioxide, nitrogen oxide and nitrogen dioxide from international shipping represented up to 80 % of the total near surface concentration of the pollutants. Contributions from shipping of PM2,5 and PM10 were calculated to a maximum of 21 % and 13 % respectively. The contribution of wet deposition of sulphur from shipping was maximum 29 % of the total wet deposition, and for dry deposition the contribution from shipping was maximum 84 %. The highest percentage contribution of wet deposition of nitrogen from shipping reached 28 % and for dry deposition 47 %. The highest concentrations and deposition of the pollutants in the study were found near large ports and shipping lanes. High concentrations were also found over larger areas at sea and over land where many people are exposed. With enhanced regulations for sulphur content in maritime fuel, the cleaning of exhausts through scrubbers has become a possible economic solution. Wet scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown. The resulting potential of future acidification in the Baltic Sea, both from atmospheric deposition and from open-loop scrubber water along the shipping lanes, based on different assumptions about sulphur content in fuel and scrubber usage has been assessed. Shipping is expected to increase globally and in the Baltic Sea region, deposition of sulphur due to shipping will depend on traffic density, emission regulations and technology choices for the emission controls. To evaluate future changes scenarios are developed considering the amount of scrubber technology used. The increase in deposition for the different scenarios differs slightly for the basins in the Baltic Sea. The proportion of ocean acidifying sulphur from ships increases when taking scrubber water into account and the major reason to increasing acidifying nitrogen from ships are due to increasing ship traffic. This study also generates a database of scenarios for atmospheric deposition and scrubber exhaust from the period 2011 to 2050.


Climate ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 64 ◽  
Author(s):  
Tayyebeh Mesbahzadeh ◽  
Maryam Mirakbari ◽  
Mohsen Mohseni Saravi ◽  
Farshad Soleimani Sardoo ◽  
Nir Y. Krakauer

Natural disasters such as dust storms are random phenomena created by complicated mechanisms involving many parameters. In this study, we used copula theory for bivariate modeling of dust storms. Copula theory is a suitable method for multivariate modeling of natural disasters. We identified 40 severe dust storms, as defined by the World Meteorological Organization, during 1982–2017 in Yazd province, central Iran. We used parameters at two spatial vertical levels (near-surface and upper atmosphere) that included surface maximum wind speed, and geopotential height and vertical velocity at 500, 850, and 1000 hPa. We compared two bivariate models based on the pairs of maximum wind speed–geopotential height and maximum wind speed–vertical velocity. We determined the bivariate return period using Student t and Gaussian copulas, which were considered as the most suitable functions for these variables. The results obtained for maximum wind speed–geopotential height indicated that the maximum return period was consistent with the observed frequency of severe dust storms. The bivariate modeling of dust storms based on maximum wind speed and geopotential height better described the conditions of severe dust storms than modeling based on maximum wind speed and vertical velocity. The finding of this study can be useful to improve risk management and mitigate the impacts of severe dust storms.


Sign in / Sign up

Export Citation Format

Share Document