In vitro Models for Testing Toxicity in the Gastrointestinal Tract

2018 ◽  
pp. 201-218
Author(s):  
Ioannis Trantakis
2014 ◽  
Vol 36 (3) ◽  
pp. 8-12
Author(s):  
Martin C. Garnett ◽  
Driton Vllasaliu ◽  
Snow Stolnik ◽  
Franco H. Falcone

The development of medicines during the 20th Century was initially based on oral delivery of drugs via the gastrointestinal tract. To enhance understanding of rate of uptake of different drugs and formulations and reduce the need for animal testing, in vitro models based on gut epithelial cell models were developed in the 1980s and 1990s. With the advent of biotechnology, an increasing number of drugs based on proteins and other biomolecules are being produced, which currently require parenteral administration (by injection). To avoid the need for injection, alternative routes of delivery are being sought for these molecules, including mucosal routes of the gastrointestinal tract and the lung. In parallel with this, the field of ‘nanotechnology’ began to develop. Nanotechnology offers both solutions and problems. ‘Nanomedicines’ over a range of nano sizes appear to offer some solutions for delivery, provided that they could cross epithelial barriers. In contrast, there remains considerable concern that the many different types of nanoparticles in development for electronics and new materials may be taken up into the body and cause harm. There are therefore clear needs for epithelial models which allow us to not only screen conventional drugs for absorption, but also assess potential non-invasive delivery of biologics and nanomedicines, as well as screen easily and reliably for nanotoxicology1. As it is the same barrier involved in all of these cases, we need a single epithelial model that can adequately reflect and give accurate answers for all of these different barrier problems. In this article, we assess the properties needed for an epithelial cellular model, the current state of the art, and some recent work developing a more accurate and comprehensive model.


2015 ◽  
Vol 3 (4) ◽  
pp. 725-745 ◽  
Author(s):  
Charlotte Cordonnier ◽  
Jonathan Thévenot ◽  
Lucie Etienne-Mesmin ◽  
Sylvain Denis ◽  
Monique Alric ◽  
...  

2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


Sign in / Sign up

Export Citation Format

Share Document