Effect of carbon source on Phenobarbital metabolism by Rhizopus stolonifer

Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.

2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2019 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Shicheng Ye ◽  
Jochem W.B. Boeter ◽  
Louis C. Penning ◽  
Bart Spee ◽  
Kerstin Schneeberger

Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.


2015 ◽  
Vol 85 ◽  
pp. 44-56 ◽  
Author(s):  
Marius Hittinger ◽  
Jenny Juntke ◽  
Stephanie Kletting ◽  
Nicole Schneider-Daum ◽  
Cristiane de Souza Carvalho ◽  
...  

2002 ◽  
Vol 68 (9) ◽  
pp. 4383-4389 ◽  
Author(s):  
Pingsheng Ji ◽  
Mark Wilson

ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, was used to determine whether similarity in carbon source utilization between a preemptive biological control agent and the pathogen was significant in determining the ability of the bacterium to suppress disease. Similarity in carbon source utilization was quantified as the ratio of the number of tomato carbon sources utilized in vitro by the biological control agent to the number of tomato carbon sources utilized in vitro by the target pathogen (the niche overlap index [NOI]). Suppression of the disease was quantified as the percent reduction in disease severity compared to the pathogen-only control when nonpathogenic bacteria were applied to foliage 48 h prior to the pathogen. In the collection of 36 nonpathogenic bacterial strains, there was a significant (P < 0.01), but weak (r2 = 0.25), correlation between reduction in disease severity and similarity in carbon source utilization, suggesting that similarity in carbon source use was significant in determining ability to suppress disease. The relationship was investigated further using catabolic mutants of P. syringae strain TLP2, an effective biological control agent of speck. Catabolic mutants exhibited lower levels of similarity (NOI = 0.07 to 0.90) than did wild-type TLP2 (NOI = 0.93). With these catabolic mutants there was a significant (P < 0.01), and stronger (r2 = 0.42), correlation between reduction in disease severity and similarity in carbon source utilization. This suggests that similarity in carbon source utilization was a more important component of biological control ability for the catabolic mutants than for the nonpathogenic bacteria. Together, these studies indicate that suppression of bacterial speck of tomato was correlated with nutritional similarity between the pathogenic and nonpathogenic bacteria and suggest that preemptive utilization of carbon sources was probably involved in the biological control of the disease by both the naturally occurring nonpathogenic bacteria and the catabolic mutants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Stephen J. Genuis ◽  
Sanjay Beesoon ◽  
Rebecca A. Lobo ◽  
Detlef Birkholz

Background. Individual members of the phthalate family of chemical compounds are components of innumerable everyday consumer products, resulting in a high exposure scenario for some individuals and population groups. Multiple epidemiological studies have demonstrated statistically significant exposure-disease relationships involving phthalates and toxicological studies have shown estrogenic effects in vitro. Data is lacking in the medical literature, however, on effective means to facilitate phthalate excretion.Methods. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for parent phthalate compounds as well as phthalate metabolites using high performance liquid chromatography-tandem mass spectrometry.Results. Some parent phthalates as well as their metabolites were excreted into sweat. All patients had MEHP (mono(2-ethylhexyl) phthalate) in their blood, sweat, and urine samples, suggesting widespread phthalate exposure. In several individuals, DEHP (di (2-ethylhexl) phthalate) was found in sweat but not in serum, suggesting the possibility of phthalate retention and bioaccumulation. On average, MEHP concentration in sweat was more than twice as high as urine levels.Conclusions. Induced perspiration may be useful to facilitate elimination of some potentially toxic phthalate compounds including DEHP and MEHP. Sweat analysis may be helpful in establishing the existence of accrued DEHP in the human body.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1238 ◽  
Author(s):  
Vera Petricevich ◽  
Rodolfo Abarca-Vargas

In this work, we explore the current knowledge about the phytochemistry and in vitro and in vivo evaluations of the extracts and, where appropriate, the main active components characterized and isolated from the Allamanda cathartica. Of the 15 Allamanda species, most phytochemical, pharmacological, and toxicological studies have focused on A. cathartica. These plants are used for the treatment of various health disorders. Numerous phytochemical investigations of plants from the A. cathartica have shown the presence of hydrocarbons, alcohols, esters, ethers, aldehydes, ketones, fatty acids, phospholipids, volatile compounds, phenolic compounds, flavonoids, alkaloids, steroids, terpenes, lactones, and carbohydrates. Various studies have confirmed that extracts and active substances isolated from the A. cathartica have multiple pharmacological activities. The species A. cathartica has emerged as a source of traditional medicine used for human health. Further studies on the phytochemical, pharmacological, and toxicological properties and their mechanisms of action, safety, and efficacy in the species of A. cathartica is recommended.


2010 ◽  
Vol 432 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Keiji Mitsui ◽  
Masafumi Matsushita ◽  
Hiroshi Kanazawa

Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.


2000 ◽  
Vol 20 (12) ◽  
pp. 4340-4349 ◽  
Author(s):  
M. Adelaida Garcia-Gimeno ◽  
Kevin Struhl

ABSTRACT In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.


2018 ◽  
Vol 47 (1) ◽  
pp. 152-161 ◽  
Author(s):  
Athanasios TSAFOUROS ◽  
Peter A. ROUSSOS

Krymsk® 5 (VSL-2) is a semi-dwarf cherry rootstock adaptable to a range of climates. The present study aimed to establish the first efficient in vitro propagation protocol for this rootstock. Therefore, six cytokinines, four adenine type (6-benzyladenine, 2-isopentenyladenine, kinetin and meta-topolin) and two phenylureas (thidiazuron and forchlorfenuron) at three (2.4 μΜ, 4.8 μΜ and 9.6 μΜ) concentrations plus three (0.24 μΜ, 0.48 μΜ, 0.96 μΜ) for thidiazuron only were tested during the multiplication stage. 6-Benzyladenine was the most efficient cytokinin, based on the number of shoots produced (3.5 shoots at 9.6 μΜ) and the number of nodes per explant (10 nodes at 9.6 μΜ) whereas the other aromatic adenine tested, i.e. meta-topolin, presented the highest number of nodes per cm and node per shoot. During the rooting stage the synthetic auxins 1-naphthaleneacetic acid (1-NAA) and indolebutyric acid (IBA) were tested at concentrations of 0, 2.5, 5, 10 and 20 μΜ both separately and in all possible combinations. The percentage of successfully rooted explants reached 95% under the combination of 20 μΜ IBA plus 5 μΜ 1-NAA, whereas the highest number of roots recorded was 8.5 roots for the treatment 20 μΜ ΙΒΑ plus 2.5 μΜ 1-NAA. Furthermore, two different carbon sources were compared, the widely used sucrose and the endogenous sugar ratio of mother plant softwood shoot, sampled during late of May. Endogenous sugar ratio proved to be the preferable carbon source, since it increased the number of shoots produced and almost doubled the number of produced nodes per explant.


Sign in / Sign up

Export Citation Format

Share Document