Work: Piece‐Rates

Author(s):  
Andrew Sanchez
Keyword(s):  
Alloy Digest ◽  
1986 ◽  
Vol 35 (4) ◽  

Abstract ELECTROLESS NICKEL is a nickel coating deposited by chemical reduction of nickel ions. The most widely used reducing agent is sodium hypophosphite. The thickness of the deposited coating is uniform over all areas of the work-piece that are in continuous contact with fresh plating solution. The process is applicable to a wide variety of metal and nonmetal substrates. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as heat treating and joining. Filing Code: Ni-332. Producer or source: Occidental Chemical Corporation.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2007 ◽  
Vol 353-358 ◽  
pp. 864-867 ◽  
Author(s):  
Hai Yang Yu ◽  
Zhen Sun ◽  
Hua Zhao ◽  
Min Hao Zhu

In the subsurface damage observations on the wear behavior of brittle dental porcelains, it still remains unsolved that how to distinguish the cracks that develops accidentally during the preparing sample process from those actually produced in the tests. In the sliding friction tests, the bonded-interface technique (BIT) was successfully used for subsurface damage evaluations. The profile of wear scar was easily observed on the cemented section of the blocks without inducing any cracks. The stresses on the surface and internal of dental porcelains were calculated with the contact element method (CEM) by ABAQUS software. The model of rectangular dental porcelain and Si3N4 ball were developed based on sliding friction tests. The Si3N4 ball modeled in this study was of the diameter of 4mm and 12 mm. The size of Vita VMK 95 porcelain blocks was 5 mm wide, 2 mm thick and 15 mm long. The glue layer thickness values are 10 .m, 20 .m and 30 .m. The loading of the Si3N4 ball was modeled as a constant distributed vertical load applied across the bonding line of the porcelain. Stresses and displacements of all nodes of the model, especially at the bonding interface, were analyzed and compared. The results of the study indicated that stress values correlated strongly to the applied loads. Stress distribution was symmetric about the bonded-interface plane. The maximum occurred in surface layer and the minimum on the bottom line in the porcelain blocks. Along the interface, stresses decreased with the distance from the surface of porcelain. On the other hand, high stresses focus on the surface part and go sharply down in the internal region along the depth direction. Among the parameters of sliding test on the stresses, the load effect is prominent. The BIT model experiences a different, non-axisymmetric stress field than that of real work-piece. So the BIT should not be considered as a reliable source of quantitative analysis but as a qualitative method for observing the form of the damage modes with more visible information than the conventional tools.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 291-298 ◽  
Author(s):  
L. Gaul ◽  
J. Roseira ◽  
J. Becker

In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed inMATLABwhich models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode shapes, which are obtained from experimental modal analysis. The modal damping and the natural frequencies for the two dominant modes are measured for several combinations of excitation force and normal force.


2011 ◽  
Vol 189-193 ◽  
pp. 1778-1781 ◽  
Author(s):  
Gui Hua Liu ◽  
Yong Qiang Guo ◽  
Zhi Jiang

By using Deform-3D software, the necking extrusion forming processes of integer trailer axle with two different heating means which are Uniform Heating (UH) method and Partly Heating (PH) method with temperature gradient are simulated. The influence of deformation parameters such as friction factor, necking coefficient, different temperature distribution of work-piece on the material flow features, stress and strain field, loading force and deformation process are analyzed in detail. According to the numerical simulation results, using PH method with temperature gradient can improve necking deformation during tube extrusion process.


Sign in / Sign up

Export Citation Format

Share Document