Selection of Heat Treatment for ATI 718Plus Casting

Author(s):  
Oscar Caballero Ruiz ◽  
Natalia Soldevilla
Keyword(s):  
Alloy Digest ◽  
2013 ◽  
Vol 62 (9) ◽  

Abstract Böhler (or Boehler) W403 VMR is a tool steel with outstanding properties, based not only on a modified chemical composition, but on the selection of highly clean raw materials for melting, remelting under vacuum (VMF), optimized diffusion annealing, and a special heat treatment. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on forming and heat treating. Filing Code: TS-721. Producer or source: Böhler Edelstahl GmbH.


2018 ◽  
Vol 27 (11) ◽  
pp. 5865-5878 ◽  
Author(s):  
Dorota Wilk-Kołodziejczyk ◽  
Krzysztof Regulski ◽  
Tomasz Giętka ◽  
Grzegorz Gumienny ◽  
Krzysztof Jaśkowiec ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 102
Author(s):  
J. D. Hourcade ◽  
M. Perez-Crespo ◽  
B. Pintado ◽  
A. Gutiérrez-Adán

Physiological bases of the sperm selection processes within the female reproductive tract before they meet and fertilize the oocyte are unknown. The aim of this work was to determine if one of the keys of spermatozoa selection could be DNA integrity. It has been reported that sperm DNA damage does not impair in vitro fertilization (IVF). However, it has been suggested that the zona pelucida (ZP) is able to select spermatozoa with unfragmented DNA (Liu and Baker 2007 Hum. Reprod. 22, 1597–1602). In this work, DNA damage of spermatozoa was artificially induced by scrotal heat treatment (HT) (42°C, 30 min). Twenty-one days after the HT, spermatozoa were recovered from the epididymis caudae of CD1 mice and from the uterine horns near the cervix (Uc), from the uterine horns near the oviducts (Uo), and from the oviducts (Ov) of CD1 females 1–2 h after mating with HT and control males. In each region we determined numbers of spermatozoa, individual motility and sperm DNA integrity by COMET assay (% DNA in tail, tail length, and COMET moment was calculated). Also, females naturally mated either with HT or control males were killed at Day 14 of pregnancy, and number of foetuses and resorptions was recorded. Additionally, IVF was performed with epididymal sperm from HT or control males, Two hours after IVF attached and un-attached spermatozoa to the ZP were recovered and samples were evaluated for sperm motility (CASA), sperm zona-binding, and sperm DNA fragmentation (COMET). Also cleavage rate of fertilized oocytes with sperm from HT or control males was analyzed. One-way ANOVA was used to compare the results form each group. Epididymal sperm count (12*106 and 4.4*106 for control and HT respectively), sperm motility (75 and 21% respectively) and testis weight (133.90 and 68.76 mg, respectively) were significantly reduced after heat treatment (P < 0.001). For the heat treatment, COMET values decreased significantly during the transit from Uc to Uo and from Uo to Ov (Tail DNA: 25.7, 23.5, and 14.4% respectively, P < 0.01; Tail length: 38.4, 29.4, and 11.2 pixels, P < 0.001; COMET Moment: 12.5, 8.5, and 2 respectively, P < 0.001). Heat treatment reduced numbers of foetuses (7 ± 0.5 v. 5 ± 0.49, control and HT group, respectively), but number of resorptions was not altered. Spermatozoa bound per ZP in IVF experiments (55 ± 7 and 13 ± 6, control and HT, respectively) and cleavage rate (61 ± 1 v. 15 ± 6, control and HT, respectively) were significantly reduced in the HT group. Two hours after IVF, spermatozoa attached to the ZP in HT group showed a significant decrease in COMET parameters as in tail length (59.46 ± 2.895 v. 34.66 ± 3.531), and in tail moment compared with unattached spermatozoa. Our results indicate that DNA integrity sperm selection mechanisms are present in both the female tract and the ZP. We suggest that genital tract and sperm-ZP binding process plays an important role in selection of sperm with normal chromatin DNA.


2018 ◽  
Vol 284 ◽  
pp. 402-407 ◽  
Author(s):  
S.N. Dzhabbarov ◽  
E.I. Pryakhin ◽  
A.A. Germanov

According to GOST 4543-71, steel 40H refers to the group of chromium steels. It is a low-alloy constructional steel of pearlite class. The paper presents a theoretical and experimental research activity carried out in order to improve the properties of the 40H steel. The results permit the selection of the right heat-treatment parameters that offer the best combination between the yield strength, tensile strength, elongation, necking, impact strength at low temperature and hardness, in order to obtain a better behavior of the material for production tubing pipes in accordance with GOST 633 Tubing pipes and couplings for them, for strength group M and L.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 519 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Diego Grisales ◽  
Dominic Stangier ◽  
Timo Butzke

In the metalworking industry, different processes and applications require the utilisation of custom designed tools. The selection of the appropriated substrate material and its pre-treatment as well as the protective coating are of great importance in the performance and life time of forming tools, dies, punches and coated parts in general. TiAlN and CrAlN coatings have been deposited onto the hot work tool steel AISI H11 by means of Direct Current Magnetron Sputtering. Prior to the deposition, the steel substrate was modified by the implementation of three different pre-treatments: nitriding of the annealed substrate [Nitr.], heat treatment of the steel (quenching and double tempering) [HT] and nitridation subsequent to a heat treatment of the substrate [HT + Nitr.]. The purpose of this research is to obtain valuable information on the microstructural properties and tribomechanical behaviour of two of the most promising ternary transition metal nitride coatings, TiAlN and CrAlN, when deposited on the AISI H11 steel with different initial properties. The different pre-treatments performed to the steel prior to the deposition favour the tailoring during the design and construction of tools for specific applications. The microstructure, the adhesion and the wear resistance of TiAlN coatings were highly influenced by the substrate preparation. Contrarily, CrAlN results were more independent of the substrate preparation and no high influences were found. For instance, the adhesion of the TiAlN coating varied from 17 to 43 N for the coating deposited onto the HT + Nitr. substrate and the HT substrate respectively, while the lowest and highest adhesion of the CrAlN coating varied between 42 and 53 N for the HT and the HT + Nitr. respectively. Likewise, the wear coefficient of the CrAlN were ten times smaller than those found for the TiAlN coatings, presumably due to the presence of hex-AlN phases and the small differences on the Young´s Modulus of the substrate and the CrAlN coatings.


1969 ◽  
Vol 11 (11) ◽  
pp. 911-911
Author(s):  
L. V. Sobolev ◽  
A. N. Zvereva
Keyword(s):  

Metallurgist ◽  
1981 ◽  
Vol 25 (4) ◽  
pp. 144-146
Author(s):  
V. V. Pavlov ◽  
I. G. Panus ◽  
V. G. Poluboyarinova ◽  
L. S. Tarvid
Keyword(s):  

1987 ◽  
Vol 21 (9) ◽  
pp. 1179-1184
Author(s):  
B. Mishra ◽  
J.J. Moore
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document