scholarly journals Appendix F: Chemical Additives Used in the High-Volume Hydraulic Fracturing Operations

2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


2021 ◽  
Author(s):  
Ravi Ramniklal Gondalia ◽  
Amit Sharma ◽  
Abhishek Shende ◽  
Amay Kumar Jha ◽  
Dinesh Choudhary ◽  
...  

Abstract From 2005 to 2020, the application of hydraulic fracturing technology in India has touched the length and breadth of the country in almost every basin and reservoir section. The variety of reservoirs and operating environment present in India governed this evolution over the past 15 years resulting in a different fit for purpose fracturing strategy for each basin varying from conventional single-stage fracturing (urban, desert & remote forested regions) to high volume multi-stage fracturing, deepwater frac-packs and offshore ultra-HPHT fracturing. The objective of this paper is to present the milestones along this evolution journey for hydraulic fracturing treatments in India from 2005 to 2020. This paper begins with a review of published industry literature from 2005 to 2020 categorized by reservoir type and the proven economical techno-operational fracturing strategy adopted during that period. The milestones are covered chronologically since the success or failure of technology application in one basin often influenced the adoption of novel hydraulic fracturing methods in other basins or by other operators during the initial years. The offshore evolution is branched between the west and the east coasts which have distinctly different journeys and challenges. The onshore evolution is split into 5 categories: Cambay onshoreBarmer Hills & Tight GasEast India CBM and shale gasAssam-Arakan BasinOnshore KG Basin Each of these regions is at different stages of evolution. The Barmer region is in the most advanced state of evolution with frac factories in place while the Assam-Arakan Basin is in a relatively nascent stage. Figure 1 presents estimated hydraulic stage count based on published literature underlining the exponential growth in hydraulic fracturing activity in India. This paper enlists the technical and operational challenges present in the onshore and offshore categories mentioned above along with the identified novel techno-operational strategies which have proven to be successful for various operators in India. A comparison is presented of the different timelines of the exploration-appraisal-development journey for each region based on the economic viability of fracturing solutions available today in the Industry. Lastly, specific non-technical challenges related to available infrastructure, logistics and social governance are discussed for each region. This paper concludes by identifying the next step-change in the evolution of hydraulic fracturing operations in India among the 5 categories. Each of Government, operators and service providers have important roles to play in expanding the adoption of this technology in India. These roles are discussed for each identified category with the perspective of continuing the country's journey towards energy security.


Author(s):  
Alexis L. Maule ◽  
Colleen M. Makey ◽  
Eugene B. Benson ◽  
Isaac J. Burrows ◽  
Madeleine K. Scammell

2016 ◽  
Vol 26 (1) ◽  
pp. 105-120 ◽  
Author(s):  
Jill E. Hopke ◽  
Molly Simis

High-volume hydraulic fracturing, a drilling simulation technique commonly referred to as “fracking,” is a contested technology. In this article, we explore discourse over hydraulic fracturing and the shale industry on the social media platform Twitter during a period of heightened public contention regarding the application of the technology. We study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). We analyze the top actors tweeting using the #fracking hashtag and receiving @mentions with the hashtag. Results show statistically significant differences in the sentiment about hydraulic fracturing and shale development across the five hashtags. In addition, results show that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations. The highest proportion of tweeters, those posting messages using the hashtag #fracking, were individual activists, while the highest proportion of @mention references went to activist organizations.


2018 ◽  
Vol 52 (4) ◽  
pp. 2349-2358 ◽  
Author(s):  
Sally Entrekin ◽  
Anne Trainor ◽  
James Saiers ◽  
Lauren Patterson ◽  
Kelly Maloney ◽  
...  

2018 ◽  
Vol 3 ◽  
pp. 40-46 ◽  
Author(s):  
Bradley J. Austin ◽  
Julia E. Kelso ◽  
Michelle A. Evans-White ◽  
Sally A. Entrekin ◽  
Brian E. Haggard

2016 ◽  
Vol 124 (9) ◽  
pp. 1323-1333 ◽  
Author(s):  
Marsha Haley ◽  
Michael McCawley ◽  
Anne C. Epstein ◽  
Bob Arrington ◽  
Elizabeth Ferrell Bjerke

Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 67
Author(s):  
Munshi Md. Shafwat Yazdan ◽  
Md Tanvir Ahad ◽  
Ishrat Jahan ◽  
Mozammel Mazumder

This paper scrutinized hydraulic fracturing applications mainly in the United States with regard to both groundwater and surface water contamination with the purpose of bringing forth objective analysis of research findings. Results from previous studies are often unconvincing due to the incomplete database of chemical additives; after and before well-founded water samples to define the change in parameters; and specific sources of water pollution in a particular region. Nonetheless, there is a superior chance of both surface and groundwater contamination induced by improper and less monitored wastewater disposal and management practices. This report has documented systematic evidence for total dissolved solids, salinity, and methane contamination regarding drinking water correlated with hydraulic fracturing. Methane concentrations were found on an average rate of 19.2 mg/L, which is 17 times higher than the acceptance rate and the maximum value was recorded as 64.2 mg/L near the active hydraulic fracturing drilling and extraction zones than that of the nonactive sites (1.1 mg/L). The concentration of total dissolved solids (350 g/L) was characterized as a voluminous amount of saline wastewater, which was quite unexpectedly high. The paper concludes with plausible solutions that should be implemented to avoid further contamination.


Sign in / Sign up

Export Citation Format

Share Document