Spintronics: Surface and Interface Aspects

2020 ◽  
pp. 187-241 ◽  
Author(s):  
Claus M. Schneider
Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


2020 ◽  
Author(s):  
Chao Wang ◽  
Yanxiao Ning ◽  
Haibo Huang ◽  
Shiwen Li ◽  
Chuanhai Xiao ◽  
...  

Abstract Surface and interface play critical roles in energy storage devices, calling for operando characterization techniques to probe the electrified surfaces/interfaces. In this work, surface science methodology including electron spectroscopy and scanning probe microscopy has been successfully applied to visualize electrochemical processes at operating electrode surfaces in an Al/graphite model battery. Intercalation of anions together with cations is directly observed in surface region of the graphite electrode with tens of nanometers thickness, whose concentration is amazingly one order higher than that in bulk. An intercalation pseudocapacitance mechanism and a double specific capacity in the electrode surface region are expected based on the super-dense intercalants and anion/cation co-intercalation, which are in sharp contrast with the battery-like mechanism in the electrode bulk. The distinct electrochemical mechanism at electrode surface is well verified by performance tests of real battery devices, showing that surface-dominant nanometer thick graphite cathode outperforms bulk-dominant micrometer thick graphite cathode. Our findings highlight the important surface effect of working electrodes in charge storage systems.


Nanoscale ◽  
2021 ◽  
Author(s):  
Ning Jiang ◽  
Bo Yang ◽  
Yulong Bai ◽  
Yaoxiang Jiang ◽  
Shifeng Zhao

Both surface and interface scattering induced a sign reversal of anomalous Hall effects (AHE) in a few heterostructures. The sign reversal exiting in a single-substance can clarify the role of...


Sign in / Sign up

Export Citation Format

Share Document