Physical, Mechanical, and Thermal Properties of Fiber‐Reinforced Hybrid Polymer Composites

2021 ◽  
pp. 309-320
Author(s):  
Subramanian Ravichandran ◽  
Suresh Sagadevan ◽  
Md Enamul Hoque
2021 ◽  
pp. 31-51
Author(s):  
Jyotishkumar Parameswaranpillai ◽  
Senthilkumar Krishnasamy ◽  
Suchart Siengchin ◽  
Sabarish Radoor ◽  
Roshny Joy ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 119 ◽  
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

Natural fibers, such as kenaf, hemp, and flax, also known as bast fibers, offer several benefits such as low density, carbon dioxide neutrality, and less dependence on petroleum sources. Their function as reinforcement in polymer composites offers a great potential to replace a segment of the glass fiber-reinforced polymer composites, especially in automotive components. Despite their promising benefits, they cannot meet the structural and durability demands of automobile parts because of their poor mechanical properties compared to glass fibers. The focus of this research work was the improvement of the mechanical property profile of the bast fiber reinforced polypropylene composites by hybridization with natural high-performance basalt fibers and the influence of basalt fibers coating and polymer modification at the mechanical and thermal properties of the composites. The specific tensile strength of the composite with polymer tailored coating was 39% and the flexural strength was 44% higher than the composite with epoxy-based basalt fibers. The mechanical performance was even better when the bast/basalt hybridization was done in maleic anhydride modified polymer. This led to the conclusion that basalt fibers sizing and polymer modification are the deciding factors in defining the optimal mechanical performance of the composites by influencing the fiber-matrix interaction. The composites were analyzed for their mechanical, thermal, and morphological properties. The comparison of bast/basalt hybrid composite with bast/glass fibers hybrid composite showed a 32% higher specific flexural and tensile strength of the basalt hybrid composite, supporting the concept of basalt fibers as a natural alternative of the glass fibers.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


2021 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Farzin Azimpour-Shishevan ◽  
Hamit Akbulut ◽  
M.A. Mohtadi-Bonab

In the current research, the effect of cyclic temperature variation on the mechanical and thermal properties of woven carbon-fiber-reinforced polymer (CFRP) composites was investigated. To this, carbon fiber textiles in twill 2/2 pattern were used as reinforced phase in epoxy, and CFRPs were fabricated by vacuum-assisted resin-infusion molding (VARIM) method. Thermal cycling process was carried out between −40 and +120 °C for 20, 40, 60 and 80 cycles, in order to evaluate the effect of thermal cycling on mechanical and thermal properties of CFRP specimens. In this regard, tensile, bending and short beam shear (SBS) experiments were carried out, to obtain modulus of elasticity, tensile strength, flexural modulus, flexural strength and inter-laminar shear strength (ILSS) at room temperature (RT), and then thermal treated composites were compared. A dynamic mechanical analysis (DMA) test was carried out to obtain thermal properties, and viscoelastic properties, such as storage modulus (E’), loss modulus (E”) and loss factors (tan δ), were evaluated. It was observed that the characteristics of composites were affected by thermal cycling due to post-curing at a high temperature. This process worked to crosslink and improve the composite behavior or degrade it due to the different coefficients of thermal expansion (CTEs) of composite components. The response of composites to the thermal cycling process was determined by the interaction of these phenomena. Based on SEM observations, the delamination, fiber pull-out and bundle breakage were the dominant fracture modes in tensile-tested specimens.


Sign in / Sign up

Export Citation Format

Share Document