Analysis of Superplastic Deformation of AZ31 Magnesium Alloy

2007 ◽  
Vol 9 (9) ◽  
pp. 777-783 ◽  
Author(s):  
F. K. Abu-Farha ◽  
M. K. Khraisheh
2007 ◽  
Vol 551-552 ◽  
pp. 237-240
Author(s):  
Hong Bo Li ◽  
J. Zhao ◽  
Jun Ting Luo ◽  
M. Hang

The superplasticity of magnesium alloy is important in industrial application. However the superplastic deformation of casting magnesium alloy is hard to be realized. In this paper, the stress–strain behaviors of casting AZ31 magnesium alloy with various strain rates at different deformation temperatures were investigated. The alloy was tested in the tensile condition with initial grain size of 25μm. It was found that the elongation of the alloy at 400°C with ε& = 4.25×10-4 s-1 is almost 200%. According to the results of uniaxial tensile experiment, the alloy exhibited superplastic deformation behavior with the slow stain rate in a temperature range of 350 to 450°C. The microstructures deformed and undeformed samples were observed with aid of optical microscope.


2008 ◽  
Vol 604-605 ◽  
pp. 267-277 ◽  
Author(s):  
Lorella Ceschini ◽  
Mohamad El Mehtedi ◽  
Alessandro Morri ◽  
Giuliano Sambogna ◽  
S. Spigarelli

The aim of the present work was to evaluate the potential for superplastic deformation of the AZ31 magnesium alloy produced by Twin Roll Casting (TRC), a continuous casting technology able to convert molten metals directly into a coiled strip. In order to develop a superplastic microstructure, the TRC sheets were heated at 400 °C for 2 h, then rolled by multiple passes with re-heating between them, with a total thickness reduction of about 60%. The superplastic behaviour of the alloy was studied by tensile tests, carried out at in the temperature range from 400 °C to 500 °C and with initial strain rates of 1•10-3 s-1 and 5•10-4 s-1. The microstructural and fractographic characterization of the alloy was carried out by means of optical (OM) and scanning electron microscopy (SEM). The tensile tests evidenced a superplastic behaviour of the processed AZ31 Mg alloy, with a maximum elongation to failure of about 500% at 460 °C, with a strain rate of 5•10-4 s-1. The microstructure of the alloy after superplastic deformation showed fine and equiaxed grains, with a large fraction of high angle boundaries. Analyses of the fracture surfaces evidenced flow localization around the grains, suggesting that grain boundary sliding (GBS) was the main deformation mechanism. Failure occurred by cavitation, mainly at the higher testing temperature, due to the prevailing effect of grain growth.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341022 ◽  
Author(s):  
FEI LIN ◽  
JIE LI ◽  
HONGWEI ZHAO ◽  
LULU SUN ◽  
ZHITONG CHEN ◽  
...  

The grain size of as-extruded AZ31 magnesium alloy was refined by isothermal annealing pretreatment through orthogonal experiment. By using the Gleeble-3800 thermal simulator, the compression superplasticity of as-extruded AZ31 magnesium alloy was studied. The high strain rate superplastic compression was realized. The process parameters of the superplastic compression were established and the mechanism of the superplastic deformation was analyzed. The effects of deformation temperature and strain rate on the superplastic flow were investigated. The results indicated that at 250°C–300°C and strain rate at 1×10-2 s -1, the true strain values were all more than 2.03. As the temperature was 300°C and the strain rate was 1×10-2 s -1–1×10 s -1, the true strain values were all more than 2.18. The results showed that the as-extruded AZ31 magnesium alloy being refined presented good compression superplasticity. The main mechanism for the superplastic compressive deformation of the as-extruded AZ31 magnesium alloy was grain-boundary sliding, meanwhile, dynamic recrystallization also played a harmonious role during the superplastic deformation.


2012 ◽  
Vol 48 (8) ◽  
pp. 915 ◽  
Author(s):  
Hongtao HUANG ◽  
Andrew Godfrey ◽  
Wei LIU ◽  
Ruihe TANG ◽  
Qing LIU

2021 ◽  
pp. 109997
Author(s):  
Banglong Fu ◽  
Junjun Shen ◽  
Uceu F.H.R. Suhuddin ◽  
Ayrton A.C. Pereira ◽  
Emad Maawad ◽  
...  

Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


2021 ◽  
pp. 101194
Author(s):  
Masataka Ijiri ◽  
Koji Yamaguchi ◽  
Shoichi Kikuchi ◽  
Fumihiro Kato ◽  
Yui Kunieda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document