scholarly journals The Occurrence of Ideal Plastic State in CP Titanium Processed by Twist Extrusion

2017 ◽  
Vol 20 (5) ◽  
pp. 1700899 ◽  
Author(s):  
Aleksey Reshetov ◽  
Roman Kulagin ◽  
Alexander Korshunov ◽  
Yan Beygelzimer
1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


2021 ◽  
Vol 11 (12) ◽  
pp. 5509
Author(s):  
Hongjin Choi ◽  
Seonghwan Choi ◽  
Soo-Chang Kang ◽  
Myoung-Gyu Lee

A fully implicit stress integration algorithm is developed for the distortional hardening model, namely the e−HAH model, capable of simulating cross−hardening/softening under orthogonal loading path changes. The implicit algorithm solves a complete set of residuals as nonlinear functions of stress, a microstructure deviator, and plastic state variables of the constitutive model, and provides a consistent tangent modulus. The number of residuals is set to be 20 or 14 for the continuum or shell elements, respectively. Comprehensive comparison programs are presented regarding the predictive accuracy and stability with different numerical algorithms, strain increments, material properties, and loading conditions. The flow stress and r−value evolutions under reverse/cross−loading conditions prove that the algorithm is robust and accurate, even with large strain increments. By contrast, the cutting−plane method and partially implicit Euler backward method, which are characterized by a reduced number of residuals, result in unstable responses under abrupt loading path changes. Finally, the algorithm is implemented into the finite element modeling of large−size, S−rail forming and the springback for two automotive steel sheets, which is often solved by a hybrid dynamic explicit–implicit scheme. The fully implicit algorithm performs well for the whole simulation with the solely static implicit scheme.


Author(s):  
Kalyani Patil ◽  
Farheen B. Khan ◽  
Sabah Akhtar ◽  
Aamir Ahmad ◽  
Shahab Uddin

AbstractThe ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.


1975 ◽  
Vol 97 (3) ◽  
pp. 1060-1066
Author(s):  
P. F. Thomason

Closed form expressions for the steady-state thermal stresses in a π/2 wedge, subject to constant-temperature heat sources on the rake and flank contact segments, are obtained from a conformal mapping solution to the steady-state heat conduction problem. It is shown, following a theorem of Muskhelishvili, that the only nonzero thermal stress in the plane-strain wedge is that acting normal to the wedge plane. The thermal stress solutions are superimposed on a previously published isothermal cutting-load solution, to give the complete thermoelastic stress distribution at the wedge surfaces. The thermoelastic stresses are then used to determine the distribution of the equivalent stress, and this gives an indication of the regions on a cutting tool which are likely to be in the plastic state. The results are discussed in relation to the problems of flank wear and rakeface crater wear in metal cutting tools.


Author(s):  
Виктор Сергеевич Суров

Описан многомерный узловой метод характеристик, предназначенный для численного расчета упругопластической деформации твердого тела в рамках модели Прандтля-Рейса с уравнением состояния небаротропного типа. В качестве критерия перехода из упругого в пластическое состояние применялось условие текучести Мизеса. Рассмотренный численный метод базируется на координатном расщеплении исходной системы уравнений на ряд одномерных подсистем с последующим их интегрированием с помощью одномерного узлового метода характеристик. Метод использован для расчета ряда одно- и двумерных модельных задач A multidimensional nodal method of characteristics is described. The method is designed to numerically calculate the elastoplastic deformation of a solid body within the Prandtl-Reis model with the non-barotropic state equation. The Mises flow condition was used as a criterion for the transition from an elastic to a plastic state. The considered numerical method is based on the coordinate splitting of the original system of equations into a number of one-dimensional subsystems. Then the resulting equations were integrated using a one-dimensional nodal method of characteristics. The proposed method allows calculating a number of one- and two-dimensional model problems. The results of calculations that employ the multidimensional node method of characteristics were compared with data calculated using the Godunov hybrid method in the framework of a model that did not take into account the contribution of potential elastic compression energy to the total energy of the medium. There are some discrepancies in the calculation results that occur at high speeds of interaction of the aluminum striker with the barrier, exceeding 500 m/s, which are associated with omission of the potential energy due to the elastic compression of the solid within the original Prandtl-Reis model


Author(s):  
Wang Shigang ◽  
Yu Jun ◽  
Zhou Ji ◽  
Li Mingzhang

Abstract In this paper, A 3-D elasto-plastic contact problem in bearings is studied by Finite Element Method (FEM). A computer program has been developed for this purpose. A trial-error method is employed to cope with the geometrical nonlinearity and a tangential stiffness method is employed to tackle the material nonlinearity appeared in elasto-plastic contact problems. A frictionless contact problem of roller bearings is analysed, the result reveals that in 3-D elasto-plastic state the trend of the contact surface pressure distribution is similar to Hertz problem’s but flater.


1976 ◽  
Vol 8 (4) ◽  
pp. 483-486
Author(s):  
I. S. Chernyshenko ◽  
G. K. Sharshukov

Sign in / Sign up

Export Citation Format

Share Document