Controlled Self-Assembly of Organic Semiconductors for Solution-Based Fabrication of Organic Field-Effect Transistors

2011 ◽  
Vol 24 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Takeo Minari ◽  
Chuan Liu ◽  
Masataka Kano ◽  
Kazuhito Tsukagoshi
2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Shi ◽  
Weiwei Bao

Recent research on organic semiconductors has revealed that the composition of the constituent organic material, as well as the subtle changes in its structure (the stacking order of molecules), can noticeably affect its bulk properties. One of the reasons for this is that the charge transport in conjugated materials is strongly affected by their structure. Further, the charge mobility increases significantly when the conjugated materials exhibit self-assembly, resulting in the formation of ordered structures. However, well-organized nanostructures are difficult to obtain using classical solution processing methods, owing to their disordered state. A simple strategy for obtaining well-ordered material films involves synthesizing new conjugated materials that can self-organize. Introducing hydrogen bonding in the materials to yield hydrogen-bonded material superstructures can be a suitable method to fulfill these critical requirements. The formed hydrogen bonds will facilitate the assembly of the molecules into a highly ordered structure and bridge the distance between the adjacent molecules, thus enhancing the intermolecular charge transfer. In this minireview, hydrogen-bonded small molecules and polymers as well as the relationship between their chemical structures and performances in organic field-effect transistors are discussed.


2014 ◽  
Vol 15 (10) ◽  
pp. 2322-2327 ◽  
Author(s):  
Do Hwan Kim ◽  
Jung Ah Lim ◽  
Wonsuk Cha ◽  
Jung Heon Lee ◽  
Hyunjung Kim ◽  
...  

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Author(s):  
Xinzi Tian ◽  
Jiarong Yao ◽  
Siyu Guo ◽  
Zhaofeng Wang ◽  
Yanling Xiao ◽  
...  

Two-dimensional molecular crystals (2DMCs) are highly desirable to probe the intrinsic properties in organic semiconductors and are promising candidates for constructing high-performance optoelectronic devices. Liquids such as water are favorable...


2020 ◽  
Vol 8 (44) ◽  
pp. 15759-15770
Author(s):  
Alexandra Harbuzaru ◽  
Iratxe Arrechea-Marcos ◽  
Alberto D. Scaccabarozzi ◽  
Yingfeng Wang ◽  
Xugang Guo ◽  
...  

Different charge transport mechanisms at the device interface are found for a series of ladder-type semiconductors with increasing chain length.


Sign in / Sign up

Export Citation Format

Share Document