scholarly journals Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Room-Temperature Self-Healing

2017 ◽  
Vol 29 (22) ◽  
pp. 1605325 ◽  
Author(s):  
Ji Liu ◽  
Cindy Soo Yun Tan ◽  
Ziyi Yu ◽  
Nan Li ◽  
Chris Abell ◽  
...  
2021 ◽  
Author(s):  
Yuanxing Zhang ◽  
Ying Wu ◽  
Jiayi Li ◽  
Ke Zhang

An aza-Michael addition between 2,6-di-t-butyl-7-phenyl-p-quinone methide and secondary amine was demonstrated to hold the dynamic covalent reaction property under ambient conditions requiring no external stimuli. Based on this dynamic covalent...


2016 ◽  
Vol 12 ◽  
pp. 50-72 ◽  
Author(s):  
Jie Wang ◽  
Zhiqiang Qiu ◽  
Yiming Wang ◽  
Li Li ◽  
Xuhong Guo ◽  
...  

The employment of cyclodextrin host–guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host–guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redox-responsiveness and self-healing.


RSC Advances ◽  
2015 ◽  
Vol 5 (122) ◽  
pp. 101148-101154 ◽  
Author(s):  
Chih-Chia Cheng ◽  
Feng-Chih Chang ◽  
Jem-Kun Chen ◽  
Tzu-Yin Wang ◽  
Duu-Jong Lee

A new urea–cytosine-functionalized supramolecular polymer can be rapidly reshaped and reprocessed under mild conditions via rearrangement of the hydrogen bonding network.


2013 ◽  
Vol 45 (9) ◽  
pp. 955-961 ◽  
Author(s):  
Nobuhiro Oya ◽  
Tabito Ikezaki ◽  
Naoko Yoshie

2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 583
Author(s):  
Yangyang Pan ◽  
Bo Liang ◽  
Yaran Niu ◽  
Dijuan Han ◽  
Dongdong Liu ◽  
...  

In this study, a new coating material for thermal barrier coating (TBC) or environment barrier coating (EBC) application, Ca3ZrSi2O9 (CZSO), was synthesized and prepared by atmospheric plasma spray (APS) technology. The evolution of the phases and microstructures of the coatings with different thermal-aged were characterized by XRD, XRF, EDS and SEM, respectively. The thermal stability was measured by TG-DTA and DSC. The mechanical and thermal properties, including Vickers hardness (HV), fracture toughness (KIC), thermal conductivity () and coefficient of thermal expansion (CTE) were focused on. It was found that the as-sprayed CZSO coating contained amorphous phase. Crystalline transformation happened at 900–960 ∘C and no mass changes took place from room temperature (RT) to 1300 ∘C. The phenomena of microcrack self-healing and composition uniformity were observed during thermal aging. The of coating was very low at about 0.57–0.80 Wm−1K−1 in 200–1200 ∘C. The combined properties indicated that the CZSO coating might be a potential T/EBC material.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 773 ◽  
Author(s):  
Yuqing Qian ◽  
Xiaowei An ◽  
Xiaofei Huang ◽  
Xiangqiang Pan ◽  
Jian Zhu ◽  
...  

Dynamic structures containing polymers can behave as thermosets at room temperature while maintaining good mechanical properties, showing good reprocessability, repairability, and recyclability. In this work, alkyl diselenide is effectively used as a dynamic cross-linker for the design of self-healing poly(urea–urethane) elastomers, which show quantitative healing efficiency at room temperature, without the need for any catalysts or external interventions. Due to the combined action of the urea bond and amide bond, the material has better mechanical properties. We also compared the self-healing effect of alkyl diselenide-based polyurethanes and alkyl disulfide-based polyurethanes. The alkyl diselenide has been incorporated into polyurethane networks using a para-substituted amine diphenyl alkyl diselenide. The resulting materials not only exhibit faster self-healing properties than the corresponding disulfide-based materials, but also show the ability to be processed at temperatures as low as 60 °C.


Sign in / Sign up

Export Citation Format

Share Document