Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In Vivo Cancer Theranostics

2018 ◽  
Vol 30 (39) ◽  
pp. 1802105 ◽  
Author(s):  
Dong Wang ◽  
Michelle M. S. Lee ◽  
Guogang Shan ◽  
Ryan T. K. Kwok ◽  
Jacky W. Y. Lam ◽  
...  
2018 ◽  
Vol 6 (47) ◽  
pp. 7871-7876 ◽  
Author(s):  
Sitong Chen ◽  
Shuang Cui ◽  
Rongxin Du ◽  
Ming Liu ◽  
Wei-Kai Tsai ◽  
...  

Highly fluorescent conjugated polymer dots with aggregation-induced emission fluorogen were applied in in vitro and in vivo cell imaging.


2021 ◽  
Vol 17 (6) ◽  
pp. 1131-1147
Author(s):  
Sijin Xiang ◽  
Zhongxiong Fan ◽  
Duo Sun ◽  
Tianbao Zhu ◽  
Jiang Ming ◽  
...  

The overall eradication of biofilm-mode growing bacteria holds significant key to the answer of a series of infection-related health problems. However, the extracellular matrix of bacteria biofilms disables the traditional antimicrobials and, more unfortunately, hampers the development of the anti-infectious alternatives. Therefore, highly effective antimicrobial agents are an urgent need for biofilm-infection control. Herein, a PEGylated palladium nanozyme (Pd-PEG) with peroxidase (POD)-like activity for highly efficient biofilm infection control is reported. Pd-PEG also shows the intrinsic photothermal effect as well as near-infrared (NIR) light-enhanced POD-like activity in the acidic environment, thereby massively destroying the biofilm matrix and killing the adhering bacteria. Importantly, the antimicrobial mechanism of the synergistic treatment based on Pd-PEG+H2O2+NIR combination was disclosed. In vitro and in vivo results illustrated the designed Pd-PEG+H2O2 +NIR treatment reagent possessed outstanding antibacterial and biofilms elimination effects with negligible biotoxicity. This work hopefully facilitates the development of metal-based nanozymes in biofilm related infectious diseases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingzhou Wu ◽  
Shuqing He ◽  
Xin Hu ◽  
Jingqin Chen ◽  
Enna Ha ◽  
...  

Transition-metal chalcogenide compounds with facile preparation and multifunctional elements act as ideal photothermal agents for cancer theranostics. This work synthesizes Cu7.2S4/5MoS2 composite nanoflowers and investigates the crystal growth mechanism to optimize the synthesis strategy and obtain excellent photothermal therapy agents. Cu7.2S4/5MoS2 exhibits a high photothermal conversion efficiency of 58.7% and acts as a theranostic nanoplatform and demonstrated an effective photothermal–chemodynamic–photodynamic synergetic therapeutic effect in both in vitro and in vivo tests. Moreover, Cu7.2S4/5MoS2 shows strong photoacoustic signal amplitudes and computed tomographic contrast enhancement in vivo. These results suggest a potential application of Cu7.2S4/5MoS2 composite nanoflowers as photo/H2O2-responsive therapeutic agents against tumors.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fei Wang ◽  
Xiaoju Men ◽  
Haobin Chen ◽  
Feixue Mi ◽  
Mengze Xu ◽  
...  

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) has drawn considerable attention due to the deeper tissue penetration and higher maximum permissible exposure. However, current phototheranostic agents are greatly restricted to the...


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 133 ◽  
Author(s):  
Justin G. Rosch ◽  
Allison N. DuRoss ◽  
Madeleine R. Landry ◽  
Conroy Sun

Multifunctional nanoparticles (NPs) that enable the imaging of drug delivery and facilitate cancer cell uptake are potentially powerful tools in tailoring oncologic treatments. Here we report the development of a layer-by-layer (LbL) formulation of folic acid (FA) and folate antimetabolites that have been well-established for enhanced tumor uptake and as potent chemotherapeutics, respectively. To investigate the uptake of LbL coated NPs, we deposited raltitrexed (RTX) or combined RTX-FA on fluorescent polystyrene NPs. The performance of these NP formulations was evaluated with CT26 murine colorectal cancer (CRC) cells in vitro and in vivo to examine both uptake and cytotoxicity against CRC. Fluorescence microscopy and flow cytometry indicated an increased accumulation of the coated NP formulations versus bare NPs. Ex vivo near-infrared (NIR) fluorescence imaging of major organs suggested the majority of NPs accumulated in the liver, which is typical of a majority of NP formulations. Imaging of the CRC tumors alone showed a higher average fluorescence from NPs accumulated in animals treated with the coated NPs, with the majority of RTX NP-treated animals showing the consistently-highest mean tumoral accumulation. Overall, these results contribute to the development of LbL formulations in CRC theranostic applications.


The Analyst ◽  
2019 ◽  
Vol 144 (21) ◽  
pp. 6262-6269 ◽  
Author(s):  
Meng Zhao ◽  
Yinjia Gao ◽  
Shuyue Ye ◽  
Jianan Ding ◽  
Anna Wang ◽  
...  

A new light-up near-infrared probe with aggregation-induced emission (AIE) characteristics was developed for highly specific and sensitive detection of alkaline phosphatase both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document