scholarly journals A Programmed Anti‐Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response

2018 ◽  
Vol 30 (50) ◽  
pp. 1805209 ◽  
Author(s):  
Francesca L. Maclean ◽  
Georgina M. Ims ◽  
Malcolm K. Horne ◽  
Richard J. Williams ◽  
David R. Nisbet
2018 ◽  
Vol 30 (50) ◽  
pp. 1870381
Author(s):  
Francesca L. Maclean ◽  
Georgina M. Ims ◽  
Malcolm K. Horne ◽  
Richard J. Williams ◽  
David R. Nisbet

Neurology ◽  
2003 ◽  
Vol 60 (4) ◽  
pp. 548-554 ◽  
Author(s):  
Pierre-Yves Dietrich ◽  
Paul R. Walker ◽  
Philippe Saas

Immune responses protect the CNS against pathogens. However, the fact that there is little dispensable tissue in the brain makes regulation necessary to avoid disastrous immune-mediated damage. Astrocytes respond vigorously to any brain injury (e.g., tumor, stroke, AD, MS, HIV) and are postulated to play an important role in the fine tuning of brain inflammation. The authors propose that astrocytes use death receptors to modulate pro- and anti-inflammatory effects.


2021 ◽  
Author(s):  
Akshita Jade Kumar ◽  
Supinder Singh Bedi ◽  
Naama Toledano-Furman ◽  
Louis Carrillo ◽  
Fanni Cardenas ◽  
...  

Abstract Background: Traumatic brain injury (TBI) is a systemic injury that disrupts a complex arrangement of interacting cells in the brain and in the gastrointestinal tract (GI). Disruption in the brain results in neuroinflammation, in which microglia are a central component along with cytokines and other soluble factors [pro and anti-inflammatory microglia (M1:M2)]. Disruption in the GI due to TBI results in a systemic inflammation which is dependent upon the gut microbiome (GM). Gut microbiome can influence microglia in the brain via the gut-brain axis. In order to determine if the microbiome-microglia connections via the gut-brain axis can be modulated, we used probiotics and antibiotics in a rodent TBI model to evaluate the microbiome-microglial connections in acute and chronic experiments.Methods: The temporal effects of treatment (probiotics or antibiotics) were used to evaluate the gut-associated lymphoid tissue (GALT) influence on the microglial response at 72 hours or 21 days after a cortical contusion injury (CCI), a rodent model of TBI. Injured animals received daily probiotics, antibiotics, or no treatment. Sham-injured animals (controls) did not receive any treatment.Results: Twenty-one days of probiotic treatment attenuated the pro-inflammatory response of microglia (M1:M2) after CCI. The post-injury inflammatory response was heightened in the GALT with antibiotic-induced dysbiosis which resulted in amplification of the pro-inflammatory microglial response. Conclusions: Probiotic treatment after TBI is a potential therapeutic in attenuating microglial activation through anti-inflammatory signaling.


2019 ◽  
Vol 3 (6) ◽  
pp. 707-711 ◽  
Author(s):  
Andrew Peterson ◽  
Adrian M. Owen

In recent years, rapid technological developments in the field of neuroimaging have provided several new methods for revealing thoughts, actions and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely to assess residual cognition, detect consciousness and even communicate with some behaviorally non-responsive patients who clinically appear to be comatose or in a vegetative state. In this article, we consider some of the ethical issues raised by these developments and the profound implications they have for clinical care, diagnosis, prognosis and medical-legal decision-making after severe brain injury.


2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Author(s):  
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.


2018 ◽  
pp. 110-119

Primary Objectives: By extending the scope of knowledge of the primary care optometrist, the brain injury population will have expanded access to entry level neurooptometric care by optometric providers who have a basic understanding of their neurovisual problems, be able to provide some treatment and know when to refer to their colleagues who have advanced training in neuro-optometric rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document