Zero‐Valent Palladium Single‐Atoms Catalysts Confined in Black Phosphorus for Efficient Semi‐Hydrogenation

2021 ◽  
pp. 2008471
Author(s):  
Cheng Chen ◽  
Wei Ou ◽  
Kah‐Meng Yam ◽  
Shibo Xi ◽  
Xiaoxu Zhao ◽  
...  
2020 ◽  
Author(s):  
cheng chen ◽  
Ou Wei ◽  
Yam Kahmeng ◽  
Xi Shibo ◽  
Zhao Xiaoxu ◽  
...  

<p></p><p>Single-atom catalysts (SACs) represent a new frontier in heterogeneous catalysis due to their remarkable catalytic properties and maximized atomic utilization. However, single atoms often bond to the support with polarized electron density and thus exhibit a high valence state, limiting their catalytic scopes in many chemical transformations. Here, we demonstrated that two-dimensional (2D) black phosphorus (BP) act as giant phosphorus (P) ligand to confine a high density of single atoms (eg, Pd1, Pt1) via atomic layer deposition. Unlike other 2D materials, BP with relatively low electronegativity and buckled structure favors the strong confinement of robust zero-valent palladium SACs in the vacancy site. Metallic Pd1/P SAC shows a highly selective semi-hydrogenation of phenylacetylene towards styrene, outperforming high-valence Pt1/P SAC, and also distinct from metallic Pd nanoparticles that facilitate the formation of fully hydrogenated products. Our DFT calculations reveal that Pd atom forms covalent-like bonding with adjacent P atoms, wherein H atoms tend to adsorb over electron-rich region for the subsequent hydrogenation. Zero-valent Pd in the confined space favors a larger energy gain for the synthesis of partially-hydrogenated product over the fully-hydrogenated one. Our work provides a new route towards the synthesis of zero-valent SACs on BP for a wide range of organic transformations. <br></p><p></p>


2020 ◽  
Author(s):  
cheng chen ◽  
Ou Wei ◽  
Yam Kahmeng ◽  
Xi Shibo ◽  
Zhao Xiaoxu ◽  
...  

<p></p><p>Single-atom catalysts (SACs) represent a new frontier in heterogeneous catalysis due to their remarkable catalytic properties and maximized atomic utilization. However, single atoms often bond to the support with polarized electron density and thus exhibit a high valence state, limiting their catalytic scopes in many chemical transformations. Here, we demonstrated that two-dimensional (2D) black phosphorus (BP) act as giant phosphorus (P) ligand to confine a high density of single atoms (eg, Pd1, Pt1) via atomic layer deposition. Unlike other 2D materials, BP with relatively low electronegativity and buckled structure favors the strong confinement of robust zero-valent palladium SACs in the vacancy site. Metallic Pd1/P SAC shows a highly selective semi-hydrogenation of phenylacetylene towards styrene, outperforming high-valence Pt1/P SAC, and also distinct from metallic Pd nanoparticles that facilitate the formation of fully hydrogenated products. Our DFT calculations reveal that Pd atom forms covalent-like bonding with adjacent P atoms, wherein H atoms tend to adsorb over electron-rich region for the subsequent hydrogenation. Zero-valent Pd in the confined space favors a larger energy gain for the synthesis of partially-hydrogenated product over the fully-hydrogenated one. Our work provides a new route towards the synthesis of zero-valent SACs on BP for a wide range of organic transformations. <br></p><p></p>


Nature ◽  
2008 ◽  
Author(s):  
Katharine Sanderson
Keyword(s):  

2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


2018 ◽  
Author(s):  
Yingqian Wang ◽  
Xiaoxia Hu ◽  
Lingling Zhang ◽  
Chunli Zhu ◽  
Jie Wang ◽  
...  

Extracellular vesicles (EVs) are involved in the regulation of cell physiological activity and the reconstruction of extracellular environment. Matrix vesicles (MVs) are a type of EVs, and they participate in the regulation of cell mineralization. Herein, bioinspired MVs embedded with black phosphorus are functionalized with cell-specific aptamer (denoted as Apt-bioinspired MVs) for stimulating biomineralization. The aptamer can direct bioinspired MVs to targeted cells, and the increasing concentration of inorganic phosphate originated from the black phosphorus can facilitate cell biomineralization. The photothermal effect of the Apt-bioinspired MVs also positively affects mineralization. In addition, the Apt-bioinspired MVs display outstanding bone regeneration performance. Considering the excellent behavior of the Apt-bioinspired MVs for promoting biomineralization, our strategy provides a way of designing bionic tools for studying the mechanisms of biological processes and advancing the development of medical engineering.<br>


ACS Nano ◽  
2018 ◽  
Vol 12 (12) ◽  
pp. 12401-12415 ◽  
Author(s):  
Leung Chan ◽  
Pan Gao ◽  
Wenhua Zhou ◽  
Chaoming Mei ◽  
Yanyu Huang ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 7717-7726 ◽  
Author(s):  
Shuai Wu ◽  
Feng He ◽  
Guoxin Xie ◽  
Zhengliang Bian ◽  
Yilong Ren ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.


Sign in / Sign up

Export Citation Format

Share Document