Centimeter-Height 3D Printing with Femtosecond Laser Two-Photon Polymerization

2018 ◽  
Vol 3 (5) ◽  
pp. 1700396 ◽  
Author(s):  
Wei Chu ◽  
Yuanxin Tan ◽  
Peng Wang ◽  
Jian Xu ◽  
Wenbo Li ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 112 ◽  
Author(s):  
Linyu Yan ◽  
Dong Yang ◽  
Qihuang Gong ◽  
Yan Li

Femtosecond laser direct writing through two-photon polymerization has been widely used in precision fabrication of three-dimensional microstructures but is usually time consuming. In this article, we report the rapid fabrication of continuous surface Fresnel lens array through femtosecond laser three-dimensional focal field engineering. Each Fresnel lens is formed by continuous two-photon polymerization of the two-dimensional slices of the whole structure with one-dimensional scan of the corresponding two-dimensional engineered intensity distribution. Moreover, we anneal the lens array to improve its focusing and imaging performance.


Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 66
Author(s):  
Nikita Nekrasov ◽  
Natalya Yakunina ◽  
Vladimir Nevolin ◽  
Ivan Bobrinetskiy ◽  
Pavel Vasilevsky ◽  
...  

Multifunctional biomaterials can pave a way to novel types of micro- and nanoelectromechanical systems providing benefits in mimicking of biological functions in implantable, wearable structures. The production of biocomposites that hold both superior electrical and mechanical properties is still a challenging task. In this study, we aim to fabricate 3D printed hydrogel from a biocomposite of bovine serum albumin with graphene oxide (BSA@GO) using femtosecond laser processing. We have developed the method for functional BSA@GO composite nanostructuring based on both two-photon polymerization of nanofilaments and direct laser writing. The atomic-force microscopy was used to probe local electrical and mechanical properties of hydrogel BSA@GO nanowires. The improved local mechanical properties demonstrate synergistic effect in interaction of femtosecond laser pulses and novel composite structure.


2019 ◽  
Vol 68 (11) ◽  
pp. 1928-1940 ◽  
Author(s):  
Evaldas Balčiūnas ◽  
Sara J Baldock ◽  
Nadežda Dreižė ◽  
Monika Grubliauskaitė ◽  
Sarah Coultas ◽  
...  

Author(s):  
Xiaoming Yu ◽  
Meng Zhang ◽  
Shuting Lei

Stereolithography of three-dimensional, arbitrarily-shaped objects is achieved by successively curing photopolymer on multiple 2D planes and then stacking these 2D slices into 3D objects. Often as a bottleneck for speeding up the fabrication process, this layer-by-layer approach originates from the lack of axial control of photopolymerization. In this paper, we present a novel stereolithography technology with which two-photon polymerization can be dynamically controlled in the axial direction using Bessel beam generated from a spatial light modulator (SLM) and an axicon. First, we use unmodulated Bessel beam to fabricate micro-wires with an average diameter of 100 μm and a length exceeding 10 mm, resulting in an aspect ratio > 100:1. A study on the polymerization process shows that a fabrication speed of 2 mm/s can be achieved. Defect and deformation are observed, and the micro-wires consist of multiple narrow fibers which indicate the existence of the self-writing effect. A test case is presented to demonstrate fast 3D printing of a hollow tube within one second. Next, we modulate the Bessel beam with an SLM and demonstrate the simultaneous generation of multiple focal spots along the laser propagation direction. These spots can be dynamically controlled by loading an image sequence on the SLM. The theoretical foundation of this technology is outlined, and computer simulation is conducted to verify the experimental results. The presented technology extends current stereolithography into the third dimension, and has the potential to significantly increase 3D printing speed.


2018 ◽  
Vol 6 (15) ◽  
pp. 2187-2197 ◽  
Author(s):  
Shangting You ◽  
Jiawen Li ◽  
Wei Zhu ◽  
Claire Yu ◽  
Deqing Mei ◽  
...  

Two-photon polymerization enables nanoscale 3D printing of hydrogels.


2016 ◽  
Vol 108 (20) ◽  
pp. 201901 ◽  
Author(s):  
A. M. Rakhymzhanov ◽  
A. Gueddida ◽  
E. Alonso-Redondo ◽  
Z. N. Utegulov ◽  
D. Perevoznik ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2034
Author(s):  
Muhammad Arif Mahmood ◽  
Andrei C. Popescu

Laser-induced forward transfer (LIFT) and two-photon polymerization (TPP) have proven their abilities to produce 3D complex microstructures at an extraordinary level of sophistication. Indeed, LIFT and TPP have supported the vision of providing a whole functional laboratory at a scale that can fit in the palm of a hand. This is only possible due to the developments in manufacturing at micro- and nano-scales. In a short time, LIFT and TPP have gained popularity, from being a microfabrication innovation utilized by laser experts to become a valuable instrument in the hands of researchers and technologists performing in various research and development areas, such as electronics, medicine, and micro-fluidics. In comparison with conventional micro-manufacturing methods, LIFT and TPP can produce exceptional 3D components. To gain benefits from LIFT and TPP, in-detail comprehension of the process and the manufactured parts’ mechanical–chemical characteristics is required. This review article discusses the 3D printing perspectives by LIFT and TPP. In the case of the LIFT technique, the principle, classification of derivative methods, the importance of flyer velocity and shock wave formation, printed materials, and their properties, as well as various applications, have been discussed. For TPP, involved mechanisms, the difference between TPP and single-photon polymerization, proximity effect, printing resolution, printed material properties, and different applications have been analyzed. Besides this, future research directions for the 3D printing community are reviewed and summarized.


2019 ◽  
Vol 27 (18) ◽  
pp. 25119 ◽  
Author(s):  
Dmitrii Perevoznik ◽  
Rashid Nazir ◽  
Roman Kiyan ◽  
Kestutis Kurselis ◽  
Beata Koszarna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document