All Paper‐Based, Multilayered, Inkjet‐Printed Tactile Sensor in Wide Pressure Detection Range with High Sensitivity

2021 ◽  
pp. 2100428
Author(s):  
Taehoon Lee ◽  
Yunsung Kang ◽  
Kwanhun Kim ◽  
Sangjun Sim ◽  
Kyubin Bae ◽  
...  
Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 208
Author(s):  
Hong Dinh Duong ◽  
Jong Il Rhee

In this study, ratiometric fluorescent glucose and lactate biosensors were developed using a ratiometric fluorescent oxygen-sensing membrane immobilized with glucose oxidase (GOD) or lactate oxidase (LOX). Herein, the ratiometric fluorescent oxygen-sensing membrane was fabricated with the ratio of two emission wavelengths of platinum meso-tetra (pentafluorophenyl) porphyrin (PtP) doped in polystyrene particles and coumarin 6 (C6) captured into silica particles. The operation mechanism of the sensing membranes was based on (i) the fluorescence quenching effect of the PtP dye by oxygen molecules, and (ii) the consumption of oxygen levels in the glucose or lactate oxidation reactions under the catalysis of GOD or LOX. The ratiometric fluorescent glucose-sensing membrane showed high sensitivity to glucose in the range of 0.1–2 mM, with a limit of detection (LOD) of 0.031 mM, whereas the ratiometric fluorescent lactate-sensing membrane showed the linear detection range of 0.1–0.8 mM, with an LOD of 0.06 mM. These sensing membranes also showed good selectivity, fast reversibility, and stability over long-term use. They were applied to detect glucose and lactate in artificial human serum, and they provided reliable measurement results.


2016 ◽  
Vol 12 ◽  
pp. 42-50 ◽  
Author(s):  
N. Manikandan ◽  
S. Muruganand ◽  
K. Sriram ◽  
P. Balakrishnan ◽  
A. Suresh Kumar

The polyvinylidene fluoride (PVDF) nanofiber has widely investigated as a sensor and transducer material, because of its high piezo and Ferro electric properties. The novel nano structure of PVDF has attracted considerable interest in the bio sensing and biomedical application. This paper deals with PVDF Tactile sensor. Basically The PVDF acts as piezoelectric effect which convert load into electrical signals. The tactile sensor has a main role for visual handicap and robotics. Any physical activities of robotic in all industrial the tactile sensor is a crucible role, whether it can left the object or handling glass parts pressure of object is main. The Sandwich type PVDF base tactile sensor has been fabricated using nanofiber. Using electro spinning method, the PVDF based nanofiber coated over coper the electrodes. In normal, the PVDF has α-phase and while applying electric pulse the PVDF polymer would be changed from α-phase into β-phase. Only in β-phase, the PVDF act as piezo electrics sensor and measure the piezoelectricity simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezo resistance of the material. The enhancement of PVDF properties has been carried by using SEM. The SEM image result showed that the size of nanofiber, the size of nanofiber is varied in the range of (180 nm-400 nm) with smooth surface. The X-Ray diffraction has shown that the PVDF was aggregated with the β-phase crystalline nature. Due to β-phase it was act as a piezo electric prosperity’s and its results are very high sensitivity.


2021 ◽  
Vol 368 (6) ◽  
Author(s):  
Liwen Zhang ◽  
Qingyu Lv ◽  
Yuling Zheng ◽  
Xuan Chen ◽  
Decong Kong ◽  
...  

ABSTRACT T-2 is a common mycotoxin contaminating cereal crops. Chronic consumption of food contaminated with T-2 toxin can lead to death, so simple and accurate detection methods in food and feed are necessary. In this paper, we establish a highly sensitive and accurate method for detecting T-2 toxin using AlphaLISA. The system consists of acceptor beads labeled with T-2-bovine serum albumin (BSA), streptavidin-labeled donor beads and biotinylated T-2 antibodies. T-2 in the sample matrix competes with T-2-BSA for antibodies. Adding biotinylated antibodies to the test well followed by T-2 and T-2-BSA acceptor beads yielded a detection range of 0.03–500 ng/mL. The half-maximal inhibitory concentration was 2.28 ng/mL and the coefficient of variation was <10%. In addition, this method had no cross-reaction with other related mycotoxins. This optimized method for extracting T-2 from food and feed samples achieved a recovery rate of approximately 90% in T-2 concentrations as low as 1 ng/mL, better than the performance of a commercial ELISA kit. This competitive AlphaLISA method offers high sensitivity, good specificity, good repeatability and simple operation for detecting T-2 toxin in food and feed.


2015 ◽  
Vol 645-646 ◽  
pp. 1298-1302
Author(s):  
Rui Zhao ◽  
Yong Zheng Wen ◽  
Wei Ma ◽  
Jian Cheng Yang ◽  
Xiao Mei Yu

In this paper, an aptasensor with high sensitivity and rapid response was developed for the detection of staphylococcus enterotoxin B (SEB) by using thiol-modified piezoresistive cantilever. Thiol-modified aptamers, acting as the functionalized sensing elements, were immobilized on the nanogold-coated surface of the sensing cantilever as agents for detecting SEB. By using the functionalized aptasensors, different concentrations of SEB were detected with a wide detection range of 6-100 ng/mL and a quick response in milk. The experimental results indicated that the cantilever-based aptasensors had sufficient sensitivity for the detection of SEB in real food commodities and might provide an economical platform for on-site detections of different toxicants with the advantages of portability, high sensitivity, and rapid response.


2020 ◽  
Vol 7 (12) ◽  
pp. 201500
Author(s):  
Sha Liu ◽  
Yong Li ◽  
Chao Yang ◽  
Liqiang Lu ◽  
Yulun Nie ◽  
...  

Arsenic contamination in groundwater is a supreme environmental problem, and levels of this toxic metalloid must be strictly monitored by a portable, sensitive and selective analytical device. Herein, a new system of smartphone-integrated paper sensors with Cu nanoclusters was established for the effective detection of As(III) in groundwater. For the integration system, the fluorescence emissive peak of Cu nanoclusters at 600 nm decreased gradually with increasing As(III) addition. Meanwhile, the fluorescence colour also changed from orange to colourless, and the detection limit was determined as 2.93 nM (0.22 ppb) in a wide detection range. The interfering ions also cannot influence the detection selectivity of As(III). Furthermore, the portable paper sensors based on Cu nanoclusters were fabricated for visual detection of As(III) in groundwater. The quantitative determination of As(III) in natural groundwater has also been accomplished with the aid of a common smartphone. Our work has provided a portable and on-site detection technique toward As(III) in groundwater with high sensitivity and selectivity.


2021 ◽  
Author(s):  
Ang Li ◽  
Ce Cui ◽  
Weijie Wang ◽  
Yue Zhang ◽  
Jianyu Zhai ◽  
...  

Abstract Graphene is complexed with cellulose fibers to construct 3D aerogels, which is generally considered to be an environmentally friendly and simple strategy to achieve wide sensing, high sensitivity and low detection of wearable piezoresistive pressure sensors. Here, graphene is incorporated into waste paper fibers with cellulose as the main component to prepare graphene coated waste paper aerogel (GWA) using a simple “filtration-oven drying” method under atmospheric pressure. The GWA was further annealed to obtain the carbonized graphene coated waste paper aerogel (C-GWA) to achieve low density and excellent resilience. The result shows that the C-GWA has a rough outer surface due to the 3D structure formed by interpenetrated fibers and the carbon skeleton with wrinkles. The sensor based on GCA shows low density (25mg/cm3), a wide detection range of 0-132 kPa, an ultra-low detection limit of 2.5 Pa (a green bean, ≈ 53.4 mg), and a high sensitivity of 31.6 kPa− 1. In addition, the sensor based on C-GWA with the excellent performance can be used to detect human motions including the pulse of the human body, cheek blowing and bending of human joints. The result indicates that the sensor based on C-GWA shows great potential for wearable electronic products.


Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


2021 ◽  
Author(s):  
Sopit Phetsang ◽  
Pinit Kidkhunthod ◽  
Narong Chanlek ◽  
Jaroon Jakmunee ◽  
Pitchaya Mungkornasawakul ◽  
...  

Abstract Numerous studies suggest that modification with functional nanomaterials can enhance the electrode electrocatalytic activity, sensitivity, and selectivity of the electrochemical sensors. Here, a highly sensitive and cost-effective disposable non-enzymatic glucose sensor based on copper(II)/reduced graphene oxide modified screen-printed carbon electrode is demonstrated. Facile fabrication of the developed sensing electrodes is carried out by the adsorption of copper(II) onto graphene oxide modified electrode, then following the electrochemical reduction. The proposed sensor illustrates good electrocatalytic activity toward glucose oxidation with a wide linear detection range from 0.10 mM to 12.5 mM, low detection limit of 65 µM, and high sensitivity of 172 µA mM− 1 cm− 2 along with satisfactory anti-interference ability, reproducibility, stability, and the acceptable recoveries for the detection of glucose in a human serum sample (95.6–106.4%). The copper(II)/reduced graphene oxide based sensor with the superior performances is a great potential for the quantitation of glucose in real samples.


Sign in / Sign up

Export Citation Format

Share Document