UV‐Curable Adhesive Tape‐Assisted Patterning of Metal Nanowires for Ultrasimple Fabrication of Stretchable Pressure Sensor

2021 ◽  
pp. 2100776
Author(s):  
Yun Hee Ju ◽  
Chul Jong Han ◽  
Kwang‐Seok Kim ◽  
Jong‐Woong Kim
Author(s):  
Naoya Saiki ◽  
Yuichiro Komasu ◽  
Kazuto Aizawa ◽  
Jun Maeda

In this study, the peeling process of UV-curable pressure sensitive adhesive tape from bump wafer is investigated through the use of finite element analysis, observation of high speed video, and actual wafer back-grinding process testing. In our experiment, a large deformation of adhesive is observed at the edge of bottom of bump, appearing on the side of the bump opposite tape-peeling direction when observed with high speed microscope video. The largely deformed adhesive creates a string shaped elongation. The adhesive residue is caused by the fracture of the adhesive string. We investigated how to generate the adhesive string in the tape-peeling process through the use of finite element analysis. In this analysis, a cohesive element is introduced into the adhesive layer. The analytical result shows the adhesive string at the same position of experiment and the stress distribution is different between the string part and the other area of adhesive. The influence of peeling angle and bump size is also investigated by the same finite element model. As a result, higher peeling angle and smaller bump sizes shows a shorter adhesive string, which lowers the risk of adhesive residue.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2202 ◽  
Author(s):  
Hyungdae Bae ◽  
Ayush Giri ◽  
Oluwafikunwa Kolawole ◽  
Amin Azimi ◽  
Aaron Jackson ◽  
...  

Diamond is a good candidate for harsh environment sensing due to its high melting temperature, Young’s modulus, and thermal conductivity. A sensor made of diamond will be even more promising when combined with some advantages of optical sensing (i.e., EMI inertness, high temperature operation, and miniaturization). We present a miniature diamond-based fiber optic pressure sensor fabricated using dual polymer-ceramic adhesives. The UV curable polymer and the heat-curing ceramic adhesive are employed for easy and reliable optical fiber mounting. The usage of the two different adhesives considerably improves the manufacturability and linearity of the sensor, while significantly decreasing the error from the temperature cross-sensitivity. Experimental study shows that the sensor exhibits good linearity over a pressure range of 2.0–9.5 psi with a sensitivity of 18.5 nm/psi (R2 = 0.9979). Around 275 °C of working temperature was achieved by using polymer/ceramic dual adhesives. The sensor can benefit many fronts that require miniature, low-cost, and high-accuracy sensors including biomedical and industrial applications. With an added antioxidation layer on the diamond diaphragm, the sensor can also be applied for harsh environment applications due to the high melting temperature and Young’s modulus of the material.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


2011 ◽  
Vol 131 (9) ◽  
pp. 1518-1527
Author(s):  
Hiromi Maruyama ◽  
Harutoyo Hirano ◽  
Abdugheni Kutluk ◽  
Toshio Tsuji ◽  
Osamu Fukuda ◽  
...  

2010 ◽  
Vol 130 (5) ◽  
pp. 170-175
Author(s):  
Tsukasa Fujimori ◽  
Hideaki Takano ◽  
Yuko Hanaoka ◽  
Yasushi Goto

2019 ◽  
Vol 139 (4) ◽  
pp. 63-68
Author(s):  
Hiroshi Nakano ◽  
Masahiro Matsumoto ◽  
Yasuo Onose ◽  
Kazuhiro Ohta

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2005 ◽  
Vol 59 (7) ◽  
pp. 1006-1013 ◽  
Author(s):  
Makoto Wakatsuki
Keyword(s):  

Author(s):  
FRANCISCO ARTHUR BONFIM AZEVEDO ◽  
Daniela Vacarini de Faria ◽  
Marcos Maximo ◽  
Mauricio Donadon

Sign in / Sign up

Export Citation Format

Share Document