PEDOT:PSS‐Metal Oxide Composite Electrode with Regulated Wettability and Work Function for High‐Performance Inverted Perovskite Solar Cells

2020 ◽  
Vol 8 (17) ◽  
pp. 2000216 ◽  
Author(s):  
Chenghao Duan ◽  
Zidan Liu ◽  
Ligang Yuan ◽  
Hepeng Zhu ◽  
Huiming Luo ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Mriganka Singh ◽  
Chih Wei Chu ◽  
Annie Ng

Nowadays, the power conversion efficiency of organometallic mixed halide perovskite solar cells (PSCs) is beyond 25%. To fabricate highly efficient and stable PSCs, the performance of metal oxide charge transport layers (CTLs) is one of the key factors. The CTLs are employed in PSCs to separate the electrons and holes generated in the perovskite active layer, suppressing the charge recombination rate so that the charge collection efficiency can be increased at their respective electrodes. In general, engineering of metal oxide electron transport layers (ETLs) is found to be dominated in the research community to boost the performance of PSCs due to the resilient features of ETLs such as excellent electronic properties, high resistance to thermal temperature and moisture, ensuring good device stability as well as their high versatility in material preparation. The metal oxide hole transport layers in PSCs are recently intensively studied. The performance of PSCs is found to be very promising by using optimized hole transport materials. This review concisely discusses the evolution of some prevalent metal oxide charge transport materials (CTMs) including TiO2, SnO2, and NiOx, which are able to yield high-performance PSCs. The article begins with introducing the development trend of PSCs using different types of CTLs, pointing out the important criteria for metal oxides being effective CTLs, and then a variety of preparation methods for CTLs as employed by the community for high-performance PSCs are discussed. Finally, the challenges and prospects for future research direction toward scalable metal oxide CTM-based PSCs are delineated.


2018 ◽  
Vol 6 (26) ◽  
pp. 6975-6981 ◽  
Author(s):  
Chongyang Xu ◽  
Zhihai Liu ◽  
Eun-Cheol Lee

A poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) hole transfer layer was used to enhance the performance and lifetime of metal oxide-free inverted perovskite solar cells.


2016 ◽  
Vol 4 (26) ◽  
pp. 10130-10134 ◽  
Author(s):  
Yong Li ◽  
Kunyuan Lu ◽  
Xufeng Ling ◽  
Jianyu Yuan ◽  
Guozhen Shi ◽  
...  

Schematic illustration of the dual function of C60–N on the perovskite layer: first, to reduce the work function of the Al electrode and second, to passivate the perovskite surface.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 145 ◽  
Author(s):  
Lin Hu ◽  
Jiaxing Song ◽  
Xinxing Yin ◽  
Zhen Su ◽  
Zaifang Li

Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally.


Author(s):  
Selina Olthof ◽  
Kai Brinkmann ◽  
Ting Hu ◽  
Klaus Meerholz ◽  
Thoams Riedl

Sign in / Sign up

Export Citation Format

Share Document