scholarly journals Doped Emitting Cesium Silver Halides as X‐Ray Scintillator with Fast Response Time, High Absorption Coefficient, and Light Yield

2021 ◽  
pp. 2100066
Author(s):  
Jia-Li Yao ◽  
Zi-Xu Zhang ◽  
Xiao-Qi Sun ◽  
Tong Chang ◽  
Jing-Fu Guo ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


Author(s):  
Panagiota Koralli ◽  
Spyridon Tsikalakis ◽  
Maria Goulielmaki ◽  
Stella Arelaki ◽  
Janina Müller ◽  
...  

Conjugated polymer nanoparticles (CPNs) have emerged as a new promising class of cancer theranostic agents due to their desirable optical features, such as high absorption coefficient and photoluminescence quantum yields,...


2021 ◽  
Author(s):  
Qidong Kang ◽  
Fei Yang ◽  
Xinyu Zhang ◽  
Ziyu Hu

Since lead has a very high absorption coefficient μ, that the radiations from within the bulk material do not penetrate the layers. While, the oxygen and water (O2 and H2O)...


Author(s):  
Chen Qian ◽  
Jianjun Li ◽  
Kaiwen Sun ◽  
Chenhui Jiang ◽  
Jialiang Huang ◽  
...  

Antimony selenosulfide, Sb2(S,Se)3, has emerged as a promising light-harvesting material for its high absorption coefficient, suitable bandgap, low-toxic and low-cost constituents. However, the poor stability and high cost of widely...


2006 ◽  
Vol 453 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Sebastian Gauza ◽  
Chien-Hui Wen ◽  
Yang Zhao ◽  
Shin-Tson Wu ◽  
Anna Ziółek ◽  
...  

1997 ◽  
Vol 471 ◽  
Author(s):  
J. Liu ◽  
D. C. Morton ◽  
M. R. Miller ◽  
Y. Li ◽  
E. W. Forsythe ◽  
...  

ABSTRACTZn2SiO4:Mn thin films were deposited and studied as thin film phosphors for flat panel cathodoluminescent displays. Crystallized films with improved electrical conductivity were obtained after conventional and rapid thermal annealings in a N2 environment at 850Xy11100 °C for 0.25 to 60 minutes. A maximum cathodoluminescent efficiency of 1.3 Lm/W was achieved under dc excitation at 1500 volts. The luminescent emission from these thin films was peaked around 525 nm. The decay time of these films was controlled in the range of 2 to 10 ms by varying the deposition and annealing parameters. The fast response time of these thin films overcomes the long decay limitation of the Zn2SiO4:Mn powder phosphor in practical display applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omid Malekan ◽  
Mehdi Adelifard ◽  
Mohamad Mehdi Bagheri Mohagheghi

Purpose In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical properties, and greater than 22% conversion efficiency. However, improvement and future commercialization of solar cells based on CH3NH3PbI3 encountered restrictions due to toxicity and instability of the lead element. Recently, studies on properties of lead-free and mixture of lead with other cations perovskite thin films as light absorber materials have been reported. The purpose of this paper was the fabrication of CH3NH3Sn1-xPbxI3 thin films with different SnI2 concentrations in ambient condition, and study on the structural, morphological, optical, and photovoltaic performance of the studied solar cells. The X-ray diffraction studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases with increasing the Sn concentration, and improvement in crystallinity and morphology was also observed. All perovskite layers had a relatively high absorption coefficient >104 cm−1 in the visible wavelengths, and the bandgap values varied in the range from 1.46 to 1.63 eV. Perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Design/methodology/approach In this work, the author mixed tin and lead with different percentages in the perovskite thin film. Also, the preparation of these layers and also other layers to fabricate solar cells based on them were conducted in an open and non-glove box environment. Finally, the effect of [Sn/Pb] ratio in the CH3NH3Sn1-xPbxI3 layers on the structural, morphological, optical, electrical and photovoltaic performance have been investigated. Findings CH3NH3Sn1-xPbxI3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) perovskite thin films have been grown by a spin-coating technique. It was found that as tin concentration increases, the X-ray diffraction and FESEM images studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases, and improvement in crystallinity, and morphology; all thin films had high absorption coefficient values close to 104 cm−1 in the visible region, and the direct optical bandgap in the layers decreases from 1.63 eV in pure CH3NH3SnI3 to 1.46 eV for CH3NH3Sn0.0.25Pb0.75I3 samples; all thin films had p-type conductivity, and mobility and carrier density increased; perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Originality/value The preparation method seems to be interesting as it is in an ambient environment without the protection of nitrogen or argon gas.


2019 ◽  
Vol 7 (44) ◽  
pp. 7033-7041 ◽  
Author(s):  
Sansan Shen ◽  
Bohui Huang ◽  
Xiaofeng Guo ◽  
Hong Wang

An on–off–on fluorescent sensor based on N-SiQD has the advantages of fast response time and high sensitivity to Hg2+ and GSH.


Sign in / Sign up

Export Citation Format

Share Document