Synergistic effects of carbon black and carbon nanotubes on the electrical resistivity of poly(butylene-terephthalate) nanocomposites

2017 ◽  
Vol 37 (6) ◽  
pp. 1744-1754 ◽  
Author(s):  
Andrea Dorigato ◽  
Marco Brugnara ◽  
Alessandro Pegoretti
2017 ◽  
Vol 37 (8) ◽  
pp. 785-794 ◽  
Author(s):  
Biao Yin ◽  
Yanwei Wen ◽  
Hongbing Jia ◽  
Jingyi Wang ◽  
Zhaodong Xu ◽  
...  

Abstract The effects of hybridization of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB) and the structure-property relationships of nanocomposites based on hydrogenated nitrile-butadiene rubber/hydrogenated carboxylated nitrile-butadiene rubber blends were extensively studied. MWCNTs used in this work were modified through acid treatment to improve the dispersion of MWCNTs in the rubber matrix and the surface interaction between MWCNTs and matrix. Synergistic interaction between CB and MWCNTs increased the tensile modulus and tear strength of nanocomposites. The effect of MWCNTs on the transport properties invoked an increment in the thermal conductivity of the nanocomposites. A combination of 10 phr (parts per hundred rubber) MWCNTs with 40 phr CB dramatically increased the modulus at 100% elongation, tear strength, and thermal conductivity of the nanocomposite by 66%, 28%, and 36%, respectively, compared with those of nanocomposite filled with 40 phr CB.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1073 ◽  
Author(s):  
Beate Krause ◽  
Piotr Rzeczkowski ◽  
Petra Pötschke

Melt-mixed composites based on polypropylene (PP) with various carbon-based fillers were investigated with regard to their thermal conductivity and electrical resistivity. The composites were filled with up to three fillers by selecting combinations of graphite nanoplatelets (GNP), carbon fibers (CF), carbon nanotubes (CNT), carbon black (CB), and graphite (G) at a constant filler content of 7.5 vol%. The thermal conductivity of PP (0.26 W/(m·K)) improved most using graphite nanoplatelets, whereas electrical resistivity was the lowest when using multiwalled CNT. Synergistic effects could be observed for different filler combinations. The PP composite, which contains a mixture of GNP, CNT, and highly structured CB, simultaneously had high thermal conductivity (0.5 W/(m·K)) and the lowest electrical volume resistivity (4 Ohm·cm).


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Stanislaw Frackowiak ◽  
Monika Maciejewska ◽  
Andrzej Szczurek ◽  
Marek Kozlowski

AbstractCarbon black-filled polymer composites were investigated as sensing materials for organic liquids. Polypropylene and polystyrene which were selected as matrices and various amounts of carbon black were considered as the main factors influencing sensitivity of the composites in view of the percolation theory. Disposable filaments were produced of these materials. Change in their electrical resistivity was measured upon immersion in benzene, toluene, xylene, ethylbenzene and their mixtures. It has been found that studied materials were sensitive to the composition of liquid mixtures of organic solvent. Relationships between the filament response and volumetric fraction of the components were presented. The studied materials have shown promising sensing properties, which suggest their applicability for identification and quantification of multicomponent organic liquids.


2021 ◽  
Vol 7 (2) ◽  
pp. 31
Author(s):  
Elena F. Sheka

sp2 Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and shape of the carbons in use as well as on the chemical prehistory is accumulated in a particular property—the stabilization of the species’ radical efficiency, thus providing the matter of stable radicals. If the feature is highly restricted and rarely available in ordinary chemistry, in the case of sp2 nanocarbons it is just an ordinary event providing, say, tons-in-mass stable radicals when either producing such widely used technological products as carbon black or dealing with deposits of natural sp2 carbons such as anthracite, shungite carbon, and other. Suggested in the paper is the consideration of stable radicals of sp2 nanocarbons from the standpoint of spin-delocalized topochemistry. Characterized in terms of the total and atomically partitioned number of effectively unpaired electrons as well as of the distribution of the latter over carbon atoms and described by selectively determined barriers of different reactions exhibiting topological essence of intermolecular interaction, sp2 nanocarbons reveal a peculiar topokinetics that lays the foundation of the stability of their radical properties.


2014 ◽  
Vol 1678 ◽  
Author(s):  
Wesley D. Tennyson

ABSTRACTCarbon nanotubes (CNTs) have been shown to be a viable conductive additive in Li-Ion batteries [1]. By using CNTs battery life, energy, and power capability can all be improved over carbon black, the traditional conductive additive. A significantly smaller weight percentage (5% CNTs) is needed to get the same conductivity as 20% carbon black. Many of the previous efforts found that a combination of conductive additives was most advantageous [2]. Unfortunately many of these efforts did not attend to the unique challenge that dispersing nanotubes presents and used non-optimal methods to disperse CNTs (e.g. ball milling) [3,4]. With poor dispersion a stable and resilient conductive network in the cathode is hard to form with CNTs alone. Here we investigate the formation of LiFePO₄ with CNTs using a polyol process synthesis.


Sign in / Sign up

Export Citation Format

Share Document