p‐Type Plastic Inorganic Thermoelectric Materials

2021 ◽  
pp. 2100883
Author(s):  
Zhiqiang Gao ◽  
Qingyu Yang ◽  
Pengfei Qiu ◽  
Tian‐Ran Wei ◽  
Shiqi Yang ◽  
...  
2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4524
Author(s):  
Amin Nozariasbmarz ◽  
Daryoosh Vashaee

Depending on the application of bismuth telluride thermoelectric materials in cooling, waste heat recovery, or wearable electronics, their material properties, and geometrical dimensions should be designed to optimize their performance. Recently, thermoelectric materials have gained a lot of interest in wearable electronic devices for body heat harvesting and cooling purposes. For efficient wearable electronic devices, thermoelectric materials with optimum properties, i.e., low thermal conductivity, high Seebeck coefficient, and high thermoelectric figure-of-merit (zT) at room temperature, are demanded. In this paper, we investigate the effect of glass inclusion, microwave processing, and annealing on the synthesis of high-performance p-type (BixSb1−x)2Te3 nanocomposites, optimized specially for body heat harvesting and body cooling applications. Our results show that glass inclusion could enhance the room temperature Seebeck coefficient by more than 10% while maintaining zT the same. Moreover, the combination of microwave radiation and post-annealing enables a 25% enhancement of zT at room temperature. A thermoelectric generator wristband, made of the developed materials, generates 300 μW power and 323 mV voltage when connected to the human body. Consequently, MW processing provides a new and effective way of synthesizing p-type (BixSb1−x)2Te3 alloys with optimum transport properties.


2021 ◽  
Author(s):  
Qi Zhang ◽  
Hengda Sun ◽  
Meifang Zhu

Abstract Organic thermoelectric (OTE) materials have been regarded as a potential candidate to harvest waste heat from complex, low temperature surfaces of objects and convert it into electricity. Recently, n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their p-type counterpart. In this review, we discuss aspects that affect the performance of n-type OTEs, and further focus on the effect of planarity of backbone on doping efficiency and eventually the TE performance. We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation. In the outlook part, we conclude forementioned devotions and point out new possibility that may promote the future development of this field.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 935 ◽  
Author(s):  
Maryana Asaad ◽  
Jim Buckman ◽  
Jan-Willem Bos

Half-Heuslers (HHs) are promising thermoelectric materials with great compositional flexibility. Here, we extend work on the p-type doping of TiCoSb using abundant elements. Ti0.7V0.3Co0.85Fe0.15Sb0.7Sn0.3 samples with nominal 17.85 p-type electron count were investigated. Samples prepared using powder metallurgy have negative Seebeck values, S ≤ −120 µV K−1, while arc-melted compositions are compensated semiconductors with S = −45 to +30 µV K−1. The difference in thermoelectric response is caused by variations in the degree of segregation of V(Co0.6Fe0.4)2Sn full-Heusler and Sn phases, which selectively absorb V, Fe, and Sn. The segregated microstructure leads to reduced lattice thermal conductivities, κlat = 4.5−7 W m−1 K−1 near room temperature. The largest power factor, S2/ρ = 0.4 mW m−1 K−2 and ZT = 0.06, is observed for the n-type samples at 800 K. This works extends knowledge regarding suitable p-type dopants for TiCoSb.


2019 ◽  
Vol 165 ◽  
pp. 78-83 ◽  
Author(s):  
Jae Min Song ◽  
Jamil Ur Rahman ◽  
Jung Young Cho ◽  
Soonil Lee ◽  
Won Seon Seo ◽  
...  

2020 ◽  
Vol 130 ◽  
pp. 110924
Author(s):  
Sang Min Yoon ◽  
Babu Madavali ◽  
Chul-Hee Lee ◽  
Olu Emmanuel Femi ◽  
Jong-Hyeon Lee ◽  
...  

2019 ◽  
Vol 64 (14) ◽  
pp. 1024-1030 ◽  
Author(s):  
Tiezheng Fu ◽  
Jiazhan Xin ◽  
Tiejun Zhu ◽  
Jiajun Shen ◽  
Teng Fang ◽  
...  

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Xiaoqiang Xu ◽  
Yongjia Wu ◽  
Lei Zuo ◽  
Shikui Chen

Abstract A large amount of energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. The thermoelectric generator (TEG) provides a way to reutilize this portion of energy by converting temperature differences into electricity using Seebeck phenomenon. Because the figures of merit zT of the thermoelectric materials are temperature-dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, the authors propose a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The multimaterial TEG is optimized using the solid isotropic material with penalization (SIMP) method. Instead of dummy materials, both the P-type and N-type electric conductors are optimally distributed with two different practical thermoelectric materials. Specifically, Bi2Te3 and Zn4Sb3 are selected for the P-type element while Bi2Te3 and CoSb3 are employed for the N-type element. Two optimization scenarios with relatively regular domains are first considered with one optimizing on both the P-type and N-type elements simultaneously, and the other one only on single P-type element. The maximum conversion efficiency could reach 9.61% and 12.34% respectively in the temperature range from 25 °C to 400 °C. CAD models are reconstructed based on the optimization results for numerical verification. A good agreement between the performance of the CAD model and optimization result is achieved, which demonstrates the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document