Reaction mechanisms and kinetics of xylo-oligosaccharide hydrolysis by dicarboxylic acids

AIChE Journal ◽  
2012 ◽  
Vol 59 (1) ◽  
pp. 188-199 ◽  
Author(s):  
Youngmi Kim ◽  
Thomas Kreke ◽  
Michael R. Ladisch
CORROSION ◽  
1958 ◽  
Vol 14 (12) ◽  
pp. 34-38 ◽  
Author(s):  
T. G. OWE BERG

Abstract The reaction mechanisms for the absorption of hydrogen by metals from moist hydrogen gas and dilute acid solutions, for the desorption from metals of dissolved hydrogen in the presence of water and for hydrogen solubility and permeation under those conditions are discussed. Their kinetics are also given. Formulae are derived for rates and equilibria. These are compared with experimental data. The migration of H atoms in the metal is concluded to be associated with zero or nearly zero activation energy. Diffusion is rapid enough to maintain almost uniform distribution of H atoms in the metal during absorption and desorption under ordinary conditions. 3.8.4


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed A. Issa ◽  
Marwa El-Azazy ◽  
Adriaan S. Luyt

AbstractAlkoxysilanes and organoalkoxysilanes are primary materials in several industries, e.g. coating, anti-corrosion treatment, fabrication of stationary phase for chromatography, and coupling agents. The hydrolytic polycondensation reactions and final product can be controlled by adjusting the hydrolysis reaction, which was investigated under a variety of conditions, such as different alkoxysilanes, solvents, and catalysts by using gas chromatography. The hydrolysis rate of alkoxysilanes shows a dependence on the alkoxysilane structure (especially the organic attachments), solvent properties, and the catalyst dissociation constant and solubility. Some of the alkoxysilanes exhibit intramolecular catalysis. Hydrogen bonding plays an important role in the enhancement of the hydrolysis reaction, as well as the dipole moment of the alkoxysilanes, especially in acetonitrile. There is a relationship between the experimentally calculated polarity by the Taft equation and the reactivity, but it shows different responses depending on the solvent. It was found that negative and positive charges are respectively accumulated in the transition state in alkaline and acidic media. The reaction mechanisms are somewhat different from those previously suggested. Finally, it was found that enthalpy–entropy compensation (EEC) effect and isokinetic relationships (IKR) are exhibited during the hydrolysis of CTES in different solvents and catalysts; therefore, the reaction has a linear free energy relationship (LFER).


Author(s):  
Gioacchina Arcoleo ◽  
F. Paolo Cavasino ◽  
Emanuele Di Dio ◽  
Carmelo Sbriziolo

2018 ◽  
Vol 312 ◽  
pp. 158-167 ◽  
Author(s):  
Qiu Jin ◽  
Biaohua Chen ◽  
Zhibo Ren ◽  
Xin Liang ◽  
Ning Liu ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (44) ◽  
pp. 26433-26442
Author(s):  
Yunju Zhang ◽  
Bing He

The reaction between CFCl2CH2O2 radicals and ClO was studied using the B3LYP and CCSD(T) methods associated with the 6-311++G(d,p) and cc-pVTZ basis sets, and subsequently RRKM-TST theory was used to predict the thermal rate constants and product distributions.


1994 ◽  
Vol 6 (4) ◽  
pp. 347-383 ◽  
Author(s):  
Marie-Florence Grenier-Loustalot

The reaction mechanisms and kinetics of endcapped ethynyl polyethers were studies in the temperature range 150-220C. The results obtained by '3C and 'H NMR, FrTIR, HPLC and DSC indicate reactivity differences and competing reactions. These materials were cured and their thermal properties evaluated.


1966 ◽  
Vol 44 (20) ◽  
pp. 2435-2443 ◽  
Author(s):  
P. W. M. Jacobs ◽  
A. Russell-Jones

The infrared spectrum of hydrazine perchlorate hemihydrate (HPH) has been determined and an assignment of the absorption bands made. Invacuo, HPH will partially dehydrate even at room temperature; when heated the remainder of the half-mole of water is lost at 61 °C. The dehydrated salt melts at 138 °C and decomposition ensues. The kinetics of decomposition may be followed in the temperature range 180–280 °C. The activation energy is 36.3 kcal/mole. At low temperatures the decomposition is represented by the chemical equation[Formula: see text]but when the temperature is high enough the rate of decomposition of the ammonium perchlorate formed becomes appreciable also. Possible reaction mechanisms are discussed.


Sign in / Sign up

Export Citation Format

Share Document