scholarly journals Informed consent for exome sequencing research in families with genetic disease: The emerging issue of incidental findings

2014 ◽  
Vol 164 (11) ◽  
pp. 2745-2752 ◽  
Author(s):  
Amanda L. Bergner ◽  
Juli Bollinger ◽  
Karen S. Raraigh ◽  
Crystal Tichnell ◽  
Brittney Murray ◽  
...  
Author(s):  
Valerie Gutmann Koch

This chapter highlights the uses and ethical implications of preimplantation genetic testing and addresses the topic of liability as it applies to use of this technology to screen and select embryos for chromosomal abnormalities and genetic traits prior to implantation. When errors or wrongs occur, there may be significant medical, psychological, and economic implications for those individuals who sought preimplantation testing to avoid a genetic disease or to improve the chance of achieving pregnancy. Informed consent, wrongful birth, and wrongful life claims may be available to those who are harmed due to these errors.


2019 ◽  
Vol 55 ◽  
pp. 29-35 ◽  
Author(s):  
Anna Sundby ◽  
Merete Watt Boolsen ◽  
Kristoffer Sølvsten Burgdorf ◽  
Henrik Ullum ◽  
Thomas Folkmann Hansen ◽  
...  

AbstractBackground:Genomic sequencing plays an increasing role in genetic research, also in psychiatry. This raises challenges concerning the validity and type of the informed consent and the return of incidental findings. However, no solution currently exists on the best way to obtain the informed consent and deliver findings to research subjects.Aims:This study aims to explore the attitudes among potential stakeholders in psychiatric genomic research toward the consenting procedure and the delivery of incidental findings.Methods:We developed a cross-sectional web-based survey among five groups of stakeholders. A total of 2637 stakeholders responded: 241 persons with a mental disorder, 671 relatives, 1623 blood donors, 74 psychiatrists, and 28 clinical geneticists.Results:The stakeholders wanted active involvement as 92.7% preferred a specific consent and 85.1% wanted to receive information through a dynamic consent procedure. The majority of stakeholders preferred to receive genomic information related to serious or life-threatening health conditions through direct contact (69.5%) with a health professional, i.e. face-to-face consultation or telephone consultation (82.4%). Persons with mental disorders and relatives did not differ in their attitudes from the other stakeholder groups.Conclusion:The findings illustrate that the stakeholders want to be more actively involved and consider consent as a reciprocal transaction between the involved subjects and the researchers in the project. The results highlight the importance of collaboration between researchers and clinical geneticists as the latter are trained, through their education and clinical experience, to return and explain genomic data to patients, relatives, and research subjects.


2016 ◽  
Vol 44 (2) ◽  
pp. 292-308 ◽  
Author(s):  
Maya Sabatello ◽  
Paul S. Appelbaum

Whole genome and exome sequencing (WGS/WES) techniques raise hope for a new scale of diagnosis, prevention, and prediction of genetic conditions, and improved care for children. For these hopes to materialize, extensive genomic research with children will be needed. However, the use of WGS/WES in pediatric research settings raises considerable challenges for families, researchers, and policy development. In particular, the possibility that these techniques will generate genetic findings unrelated to the primary goal of sequencing has stirred intense debate about whether, which, how, and when these secondary or incidental findings (SFs) should be returned to parents and minors. The debate is even more pronounced when the subjects are adolescents, for whom decisions about return of SFs may have particular implications. In this paper, we consider the rise of “genomic citizenship” and the main challenges that arise for these stakeholders: adolescents' involvement in decisions relating to return of genomic SFs, the types of SFs that should be offered, privacy protections, and communication between researchers and adolescents about SFs. We argue that adolescents' involvement in genomic SF-related decisions acknowledges their status as valuable stakeholders without detracting from broader familial interests, and promotes more informed genomic citizens.


2013 ◽  
Vol 16 (5) ◽  
pp. 367-373 ◽  
Author(s):  
Paul S. Appelbaum ◽  
Cameron R. Waldman ◽  
Abby Fyer ◽  
Robert Klitzman ◽  
Erik Parens ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Ev. M ◽  
R Morales ◽  
B Lledo ◽  
J A Ortiz ◽  
F M Lozano ◽  
...  

Abstract Study question Could patient suffering unexplained recurrent fetal malformations be benefit of PGT-M by exome sequencing mutations identification? Summary answer Patients suffering unexplained recurrent fetal malformations could be benefit of the use of exome sequencing in combination to PGT-M to have a healthy live birth. What is known already Fetal malformations account for approximately 3% of live births and causes include: chromosomal abnormalities, exposure to toxic substances or teratogens and infections. Recently, studies have shown that several monogenic diseases are linked to fetal abnormalities. However, because of the large number of potential genes, genetic testing is challenging. Exome sequencing is widely used to detect genetic mutations and has emerged as a useful tool for finding the genetic cause of fetal abnormalities. The aim of this study was to show how exome sequencing in patients suffering unexplained recurrent fetal malformations in combination to PGT-M could lead to successful healthy newborn. Study design, size, duration Case report of a non-consanguineous couple with unexplained, recurrent fetal malformations. Couple were recruited during clinical consultation for unexplained recurrent fetal malformations at a private reproductive medicine clinic. The couple had two malformed fetus with the same congenital abnormalities: hydrocephalus, cerebellar vermis agenesis, cerebellar hypoplasia and enlarged cisterna magna. Patients signed written informed consent regarding to exome testing. For fetal sample, informed consent was obtained from parents. Participants/materials, setting, methods Sample of the affected fetus were provided. Parental genomic DNA was extracted from peripheral blood. Exome sequencing was performed using TrusightOne (Illumina®). FASTAQ data were processed through BWA and GATK algorithm. VCF files were analysed using Variant Interpreter software. After genetic counselling, PGT-M was performed using linkage polymorphic markers analysis and mutation sequencing. Embryo biopsy was carried at blastocyst stage. Embryos were vitrified and one healthy embryo was thaw and transfer in a subsequent cycle. Main results and the role of chance An homozygous novel pathogenic mutation c.641 C>T (p.Ala214Val) in FVLCR2 gene was found. The parents were heterozygous carriers revealing that the detected variant follow an autosomal recessive pattern. The FLVCR2 (14q24.3) gene encodes a transmembrane protein that belongs to the major facilitator superfamily of secondary carriers that transport small solutes in response to chemiosmosis ion gradients, such as calcium. Mutations in this gene are related to fetal central nervous system defects. This disorder is diagnosed prenatally and is lethal. PGT-M was recommended during genetic counselling. After control ovarian stimulation 14 oocytes were retrieved and finally 4 embryos were suitable for embryo biopsy at blastocyst stage. One embryo was diagnosed as healthy, two affected and one heterozygous carrier. The healthy embryo was thaw and transferred and a healthy male baby was born. Limitations, reasons for caution Exome sequencing has technical limitations: only covers mutations in coding regions and does not cover noncoding regions of the genome. It also cannot reliably detect copy-number variants at single gene level. Wider implications of the findings: This study offers strong evidence of exome-sequencing as a new diagnostic strategy and powerful tool discovering the underlying etiology of recurrent fetal malformations and identifying new genes important for human development. Using this strategy in combination with PGT-M, clinicians can help couples with recurrent fetal malformations to have healthy newborns. Trial registration number Not applicable


2020 ◽  
pp. 329-362
Author(s):  
Thomas J. White ◽  
Steven B. Lee

Chapter 15 covers various ethical issues associated with the use of DNA methods for forensic analyses and human rights investigations. Topics include informed consent and storage issues for samples and profiles; data security and privacy; identification of individuals using aggregate data from forensic, genealogical, research, or clinical databases; the burden of the obligation to report incidental findings that are medically actionable; cultural perspectives on genetic information; government misuse of potentially sensitive DNA data; public policy regarding the validity of pattern/experience evidence; and other non-DNA forensic science disciplines.


Sign in / Sign up

Export Citation Format

Share Document