scholarly journals LANGaware: Leveraging machine learning on natural language for the early detection of neurodegenerative and psychiatric diseases

2021 ◽  
Vol 17 (S11) ◽  
Author(s):  
Vassiliki Rentoumi ◽  
Evangelos Vassiliou ◽  
Admir Demiraj ◽  
Nikiforos Pittaras ◽  
Petros Mandalis ◽  
...  
2020 ◽  
Author(s):  
Francisco Diego Rabelo-da-Ponte ◽  
Jacson Gabriel Feiten ◽  
Benson Mwangi ◽  
Fernando C. Barros ◽  
Fernando C. Wehrmeister ◽  
...  

Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sanna Iivanainen ◽  
Jussi Ekstrom ◽  
Henri Virtanen ◽  
Vesa V. Kataja ◽  
Jussi P. Koivunen

Abstract Background Immune-checkpoint inhibitors (ICIs) have introduced novel immune-related adverse events (irAEs), arising from various organ systems without strong timely dependency on therapy dosing. Early detection of irAEs could result in improved toxicity profile and quality of life. Symptom data collected by electronic (e) patient-reported outcomes (PRO) could be used as an input for machine learning (ML) based prediction models for the early detection of irAEs. Methods The utilized dataset consisted of two data sources. The first dataset consisted of 820 completed symptom questionnaires from 34 ICI treated advanced cancer patients, including 18 monitored symptoms collected using the Kaiku Health digital platform. The second dataset included prospectively collected irAE data, Common Terminology Criteria for Adverse Events (CTCAE) class, and the severity of 26 irAEs. The ML models were built using extreme gradient boosting algorithms. The first model was trained to detect the presence and the second the onset of irAEs. Results The model trained to predict the presence of irAEs had an excellent performance based on four metrics: accuracy score 0.97, Area Under the Curve (AUC) value 0.99, F1-score 0.94 and Matthew’s correlation coefficient (MCC) 0.92. The prediction of the irAE onset was more difficult with accuracy score 0.96, AUC value 0.93, F1-score 0.66 and MCC 0.64 but the model performance was still at a good level. Conclusion The current study suggests that ML based prediction models, using ePRO data as an input, can predict the presence and onset of irAEs with a high accuracy, indicating that ePRO follow-up with ML algorithms could facilitate the detection of irAEs in ICI-treated cancer patients. The results should be validated with a larger dataset. Trial registration Clinical Trials Register (NCT3928938), registration date the 26th of April, 2019


Sign in / Sign up

Export Citation Format

Share Document