scholarly journals Fragment Screening against the EthR-DNA Interaction by Native Mass Spectrometry

2017 ◽  
Vol 56 (26) ◽  
pp. 7488-7491 ◽  
Author(s):  
Daniel Shiu-Hin Chan ◽  
Vitor Mendes ◽  
Sherine E. Thomas ◽  
Brendan N. McConnell ◽  
Dijana Matak-Vinković ◽  
...  
2017 ◽  
Vol 129 (26) ◽  
pp. 7596-7599
Author(s):  
Daniel Shiu-Hin Chan ◽  
Vitor Mendes ◽  
Sherine E. Thomas ◽  
Brendan N. McConnell ◽  
Dijana Matak-Vinković ◽  
...  

2017 ◽  
Vol 53 (25) ◽  
pp. 3527-3530 ◽  
Author(s):  
Daniel Shiu-Hin Chan ◽  
Wei-Guang Seetoh ◽  
Brendan N. McConnell ◽  
Dijana Matak-Vinković ◽  
Sherine E. Thomas ◽  
...  

The interaction between Mycobacterium tuberculosis EthR and its operator DNA has been studied by native mass spectrometry, revealing an interesting stoichiometry.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3010
Author(s):  
Sarah L. Mueller ◽  
Panagiotis K. Chrysanthopoulos ◽  
Maria A. Halili ◽  
Caryn Hepburn ◽  
Tom Nebl ◽  
...  

The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen–deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.


2019 ◽  
Author(s):  
Zachary VanAernum ◽  
Florian Busch ◽  
Benjamin J. Jones ◽  
Mengxuan Jia ◽  
Zibo Chen ◽  
...  

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes, and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is timeconsuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes, or clarified cell lysates. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


2019 ◽  
Author(s):  
Michael Olp ◽  
Daniel Sprague ◽  
Stefan Kathman ◽  
Ziyang Xu ◽  
Alexandar Statsyuk ◽  
...  

<p>Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the <i>C</i>-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.</p>


2020 ◽  
Author(s):  
Paul Dominic B. Olinares ◽  
Jin Young Kang ◽  
Eliza Llewellyn ◽  
Courtney Chiu ◽  
James Chen ◽  
...  

2021 ◽  
Author(s):  
Anirban Ghosh ◽  
Eric Largy ◽  
Valérie Gabelica

Abstract G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Liu ◽  
Wesley C. Van Voorhis ◽  
Ronald J. Quinn

AbstractA key step in the development of new pharmaceutical drugs is the identification of the molecular target and distinguishing this from all other gene products that respond indirectly to the drug. Target identification remains a crucial process and a current bottleneck for advancing hits through the discovery pipeline. Here we report a method, that takes advantage of the specific detection of protein–ligand complexes by native mass spectrometry (MS) to probe the protein partner of a ligand in an untargeted method. The key advantage is that it uses unmodified small molecules for binding and, thereby, it does not require labelled ligands and is not limited by the chemistry required to tag the molecule. We demonstrate the use of native MS to identify known ligand–protein interactions in a protein mixture under various experimental conditions. A protein–ligand complex was successfully detected between parthenolide and thioredoxin (PfTrx) in a five-protein mixture, as well as when parthenolide was mixed in a bacterial cell lysate spiked with PfTrx. We provide preliminary data that native MS could be used to identify binding targets for any small molecule.


Sign in / Sign up

Export Citation Format

Share Document