scholarly journals Development of a target identification approach using native mass spectrometry

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Liu ◽  
Wesley C. Van Voorhis ◽  
Ronald J. Quinn

AbstractA key step in the development of new pharmaceutical drugs is the identification of the molecular target and distinguishing this from all other gene products that respond indirectly to the drug. Target identification remains a crucial process and a current bottleneck for advancing hits through the discovery pipeline. Here we report a method, that takes advantage of the specific detection of protein–ligand complexes by native mass spectrometry (MS) to probe the protein partner of a ligand in an untargeted method. The key advantage is that it uses unmodified small molecules for binding and, thereby, it does not require labelled ligands and is not limited by the chemistry required to tag the molecule. We demonstrate the use of native MS to identify known ligand–protein interactions in a protein mixture under various experimental conditions. A protein–ligand complex was successfully detected between parthenolide and thioredoxin (PfTrx) in a five-protein mixture, as well as when parthenolide was mixed in a bacterial cell lysate spiked with PfTrx. We provide preliminary data that native MS could be used to identify binding targets for any small molecule.

2019 ◽  
Author(s):  
Rebecca Beveridge ◽  
Dirk Kessler ◽  
Klaus Rumpel ◽  
Peter Ettmayer ◽  
Anton Meinhart ◽  
...  

Protein degraders, also known as proteolysis targeting chimeras (PROTACs), are bifunctional small molecules that bring an E3 ubiquitin ligase and a protein of interest (POI) into proximity, thus promoting ubiquitination and degradation of the targeted POI [1–3]. Despite their great promise as next-generation pharmaceutical drugs, the development of new PROTACs is challenged by the complexity of the system, which involves binary and ternary interactions between components. Here, we demonstrate the strength of native mass spectrometry (nMS), a label-free technique, to provide novel insight into PROTAC-mediated protein interactions. We show that nMS can monitor the formation of ternary E3-PROTAC-POI complexes and detect various intermediate species in a single experiment. A unique benefit of the method is its ability to reveal preferentially formed E3-PROTAC-POI combinations in competition experiments with multiple substrate proteins, thereby positioning it as an ideal high-throughput screening strategy during the development of new PROTACs.


2019 ◽  
Vol 88 (1) ◽  
pp. 85-111 ◽  
Author(s):  
Jani Reddy Bolla ◽  
Mark T. Agasid ◽  
Shahid Mehmood ◽  
Carol V. Robinson

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid–protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein–lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo–electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein–lipid interactions in the native environment.


2021 ◽  
Author(s):  
Thomas E Walker ◽  
Mehdi Shirzadeh ◽  
He Mirabel Sun ◽  
Jacob W McCabe ◽  
Andrew Roth ◽  
...  

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature-electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL/GroES complexes. The results show clear evidences for de-stabilization of both GroEL14 and GroES7 at temperatures of 50 oC and 45 oC, respectively, substantially below the pre-viously reported melting temperature (Tm ~ 70 oC). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESx-ATPy, where x = 1, 2, 8 and y = 0, 1, 2, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry re-veals new insights about the stability of GroEL in response to several environmental effects: (i) temperature-dependent ATP binding to GroEL (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiome-try of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and, (iii) a change in the temper-ature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 to 56 oC. The similarities between results obtained using native MS and cryo-EM (Clare et al., An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-11; Ranson et al., Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes. Nat. Struct. Mol. Biol. 2006, 13, 147-152.) underscores the utility of native MS for investiga-tions of molecular machines as well as identification of key intermediates involved in the chaperone-assisted protein folding cycle.


2020 ◽  
Vol 48 (2) ◽  
pp. 547-558 ◽  
Author(s):  
Cagla Sahin ◽  
Deseree J. Reid ◽  
Michael T. Marty ◽  
Michael Landreh

A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein–protein, protein–ligand, and protein–lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.


2021 ◽  
Author(s):  
Thomas E Walker ◽  
Mehdi Shirzadeh ◽  
He Mirabel Sun ◽  
Jacob W McCabe ◽  
Andrew Roth ◽  
...  

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature-electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL/GroES complexes. The results show clear evidences for destabilization of both GroEL14 and GroES7 at temperatures of 50 oC and 45 oC, respectively, substantially below the previously reported melting temperature (Tm ~ 70 oC). This destabilization is accompanied by temperature-dependent reaction products that have previously unreport-ed stoichiometries, viz. GroEL14-GroESx-ATPy, where x = 1, 2, 8 and y = 0, 1, 2, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to several environmental effects: (i) temperature-dependent ATP binding to GroEL (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and, (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 to 56 oC. The similarities between results obtained using native MS and cryo-EM (Clare et al., An expanded protein folding cage in the GroEL-gp31 complex. J Mol Biol 2006, 358, 905-11; Ranson et al., Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes. Nat. Struct. Mol. Biol. 2006, 13, 147-152.) underscores the util-ity of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperone-assisted protein folding cycle.


2013 ◽  
Vol 31 (6) ◽  
pp. 715-720 ◽  
Author(s):  
Yunhuan Wei ◽  
Tongdan Wang ◽  
Chao Liu ◽  
Qianqian Zhang ◽  
Lishun Wang ◽  
...  

2021 ◽  
Author(s):  
Clinton G. L. Veale ◽  
Maria Mateos-Jiménez ◽  
Michaelone C. Vaaltyn ◽  
Ronel Müller ◽  
Matodzi P. Makhubu ◽  
...  

We demonstrate the potential of native mass spectrometry for modelling Protein–Protein Interactions, leading to the identification of inhibitors of the HSP90–HOP PPI.


2021 ◽  
Author(s):  
Francesco Fiorentino ◽  
Dante Rotili ◽  
Antonello Mai ◽  
Jani Bolla ◽  
Carol Vivien Robinson

We developed a native mass spectrometry-based approach to quantify the monomer-dimer equilibrium of the LPS transport protein LptH. We use this method to assess the potency and efficacy of an...


2021 ◽  
Author(s):  
Yang Yang ◽  
Daniil G. Ivanov ◽  
Igor A. Kaltashov

Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community - the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.


Sign in / Sign up

Export Citation Format

Share Document