Stable, Wavelength‐Tunable Fluorescent Dyes in the NIR‐II Region for In Vivo High‐Contrast Bioimaging and Multiplexed Biosensing

2019 ◽  
Vol 58 (24) ◽  
pp. 8166-8171 ◽  
Author(s):  
Zuhai Lei ◽  
Caixia Sun ◽  
Peng Pei ◽  
Shangfeng Wang ◽  
Dandan Li ◽  
...  
2019 ◽  
Vol 131 (24) ◽  
pp. 8250-8255 ◽  
Author(s):  
Zuhai Lei ◽  
Caixia Sun ◽  
Peng Pei ◽  
Shangfeng Wang ◽  
Dandan Li ◽  
...  

2016 ◽  
Vol 55 (02) ◽  
pp. 51-62 ◽  
Author(s):  
S. Hermann ◽  
M. Schäfers ◽  
C. Höltke ◽  
A. Faust

SummaryOptical imaging has long been considered a method for histological or microscopic investigations. Over the last 15 years, however, this method was applied for preclinical molecular imaging and, just recently, was also able to show its principal potential for clinical applications (e.g. fluorescence-guided surgery). Reviewing the development and preclinical evaluation of new fluorescent dyes and target-specific dye conjugates, these often show characteristic patterns of their routes of excretion and biodistribution, which could also be interesting for the development and optimization of radiopharmaceuticals. Especially ionic charges show a great influence on biodistribution and netcharge and charge-distribution on a conjugate often determines unspecific binding or background signals in liver, kidney or intestine, and other organs.Learning from fluorescent probe behaviour in vivo and translating this knowledge to radio-pharmaceuticals might be useful to further optimize emerging and existing radiopharmaceuticals with respect to their biodistribution and thereby availability for binding to their targets.


Author(s):  
Woonghee Lee ◽  
Kondapa Naidu Bobba ◽  
Jung Young Kim ◽  
Hyun Park ◽  
Abhinav Bhise ◽  
...  

Correction for ‘A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images’ by Woonghee Lee et al., J. Mater. Chem. B, 2021, 9, 2993–2997, DOI: 10.1039/D0TB02911D.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shangfeng Wang ◽  
Yong Fan ◽  
Dandan Li ◽  
Caixia Sun ◽  
Zuhai Lei ◽  
...  

2009 ◽  
Vol 62 (6) ◽  
pp. 1497-1509 ◽  
Author(s):  
Jin Hyung Lee ◽  
Sarah P. Sherlock ◽  
Masahiro Terashima ◽  
Hisanori Kosuge ◽  
Yoriyasu Suzuki ◽  
...  

Nano Today ◽  
2021 ◽  
Vol 40 ◽  
pp. 101264
Author(s):  
Gaoju Pang ◽  
Yingying Zhang ◽  
Xiaoyong Wang ◽  
Huizhuo Pan ◽  
Xinyu Zhang ◽  
...  
Keyword(s):  

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1819
Author(s):  
Michael A. Turner ◽  
Thinzar M. Lwin ◽  
Siamak Amirfakhri ◽  
Hiroto Nishino ◽  
Robert M. Hoffman ◽  
...  

A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon’s ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.


2021 ◽  
pp. 000370282110275
Author(s):  
Rachel Rex ◽  
Soumik Siddhanta ◽  
Ishan Barman

Fluorescence imaging is a major driver of discovery in biology, and an invaluable asset in clinical diagnostics. To overcome quenching limitations of conventional fluorescent dyes and further improve intensity, nanoparticle-based constructs have been the subject of intense investigation, and within this realm, dye-doped silica-coated nanoparticles have garnered significant attention. Despite their growing popularity in research, fluorescent silica nanoparticles suffer from a significant flaw. The degradation of these nanoparticles in biological media by hydrolytic dissolution is underreported, leading to serious misinterpretations, and limiting their applicability for live cell and in vivo imaging. Here, the development of an ultra-stable, dye-embedded, silica-coated metal nanoparticle is reported, and its superior performance in long-term live cell imaging is demonstrated. While conventional dye-doped silica nanoparticles begin to degrade within an hour in aqueous media, by leveraging a modified liquid calcination process, this new construct is shown to be stable for at least 24 h. The stability of this metal-enhanced fluorescent probe in biologically relevant temperatures and media, and its demonstrated utility for cell imaging, paves the way for its future adoption in biomedical research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Richard B. Banati ◽  
Paul Wilcox ◽  
Ran Xu ◽  
Grace Yin ◽  
Emily Si ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document