A 13C-NMR analysis method for phenol–formaldehyde resin strength and formaldehyde emission

1995 ◽  
Vol 55 (7) ◽  
pp. 1007-1015 ◽  
Author(s):  
L. A. Panamgama ◽  
A. Pizzi
BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 2727-2739
Author(s):  
Anca Maria Varodi ◽  
Emanuela Beldean ◽  
Maria Cristina Timar

Replacement of phenol-formaldehyde with a mixed furan resin is considered in this work as a means to improving plywood properties made with urea-formaldehyde-based adhesive currently made with an addition of phenol-formaldehyde resin. Previous research showed that the furan resins can improve water resistance and can provide long stability for the glue line. Plywood was manufactured with modified adhesives and characterized in comparison with a reference product. Thickness, physical properties (moisture content, density, and total water absorption), mechanical properties (shearing strength, bending strength, and elasticity modulus in bending), and formaldehyde emission were determined according to standardized methods. The results indicated that the addition of furan resin enhanced the water resistance by 43% and formaldehyde emission is according to E1 class. Also, the mechanical properties were improved; the shear strength for the adhesive composition with furan resin was increased by 14 to 30% compared with the reference product, depending on the testing conditions.


2020 ◽  
pp. 34-43
Author(s):  
N. R. Memetov ◽  
◽  
A. V. Gerasimova ◽  
A. E. Kucherova ◽  
◽  
...  

The paper evaluates the effectiveness of the use of graphene nanostructures in the purification of lead (II) ions to improve the ecological situation of water bodies. The mechanisms and characteristic parameters of the adsorption process were analyzed using empirical models of isotherms at temperatures of 298, 303, 313 and 323 K, which correspond to the following order (based on the correlation coefficient): Langmuir (0.99) > Temkin (0.97) > Dubinin – Radushkevich (0.90). The maximum adsorption capacity of the material corresponds to the range from 230 to 260 mg/g. We research the equilibrium at the level of thermodynamic parameter estimates, which indicates the spontaneity of the process, the endothermic nature and structure change of graphene modified with phenol-formaldehyde resin during the adsorption of lead (II) ions, leading to an increase in the disorder of the system.


Sign in / Sign up

Export Citation Format

Share Document