Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma

2010 ◽  
pp. NA-NA ◽  
Author(s):  
Shalini Saxena ◽  
Alok R. Ray ◽  
Bhuvanesh Gupta
2007 ◽  
Vol 107 (1) ◽  
pp. 324-330 ◽  
Author(s):  
Bhuvanesh Gupta ◽  
Shalini Saxena ◽  
Alok Ray

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2028
Author(s):  
Shin-ichi Sawada ◽  
Yasunari Maekawa

We prepared novel bipolar membranes (BPMs) consisting of cation and anion exchange layers (CEL and AEL) using radiation-induced asymmetric graft polymerization (RIAGP). In this technique, graft polymers containing cation and anion exchange groups were introduced into a base film from each side. To create a clear CEL/AEL boundary, grafting reactions were performed from each surface side using two graft monomer solutions, which are immiscible in each other. Sodium p-styrenesulfonate (SSS) and acrylic acid (AA) in water were co-grafted from one side of the base ethylene-co-tetrafluoroethylene film, and chloromethyl styrene (CMS) in xylene was simultaneously grafted from the other side, and then the CMS units were quaternized to afford a BPM. The distinct SSS + AA- and CMS-grafted layers were formed owing to the immiscibility of hydrophilic SSS + AA and hydrophobic CMS monomer solutions. This is the first BPM with a clear CEL/AEL boundary prepared by RIAGP. However, in this BPM, the CEL was considerably thinner than the AEL, which may be a problem in practical applications. Then, by using different starting times of the first SSS+AA and second CMS grafting reactions, the CEL and AEL thicknesses was found to be controlled in RIAGP.


2010 ◽  
Vol 158 ◽  
pp. 184-188 ◽  
Author(s):  
Ming Shan Yang ◽  
Lin Kai Li ◽  
Jian Guo Zhang

The surface modification of silica for epoxy molding compounds (EMC) was conducted by plasma polymerization using RF plasma (13.56MPa), and the modification factors such as plasma power, gas pressure and treatment time were investigated systematically in this paper. The monomers utilized for the plasma polymer coatings were pyrrole, 1,3-diaminopropane, acrylic acid and urea. The plasma polymerization coating of silica was characterized by FTIR, contact angle. Using the silica treated by plasma as filler, ortho-cresol novolac epoxy as main resin, novolac phenolic-formaldehyde resin as cross-linking agent and 2-methylmizole as curing accelerating agent, the EMCs used for the packaging of large-scale integrated circuits were prepared by high-speed pre-mixture and twin roller mixing technology. The results have shown that the surface of silica can be coated by plasma polymerization of pyrrole, 1,3-diaminopropane, acrylic acid and urea, and the comprehensive properties of EMC were improved.


2016 ◽  
Vol 12 (2) ◽  
pp. 4045-4056 ◽  
Author(s):  
Hisham Essawy

Grafting polymerization of acrylic acid (AA) was undertaken onto cellulose powder (Cell) in presence of potassium fulvate (KF) to produce semi-interpenetrating network structures. The grafting efficiency (GE) and grafting yield (GY) were studied as and indicated that the grafting process was not influenced in presence of KF. KF was expected to be incorporated into the cellulose backbone in the same course of the graft polymerization via polycondensation with groups from cellulose and monomer. The simultaneous graft polymerization of acrylic acid and polycondensation processes of all components allows formation of a more chemically active semi-interpenetrating network structure. Successful incorporation of KF to the network structure was predicted from fourier transform infrared spectroscopy (FTIR) while enhanced Cu2+ uptake confirmed the better chemical activity with respect to the same network prepared in absence of KF. Furthermore, the wide variation of the swelling potential as a function of the pH further corroborates the insertion of KF to the network structure. Imaging with scanning electron microscopy (SEM) indicated morphological alteration on the surface which might be related to the KF anchoring to the cellulose backbone. The developed superabsorbents showed increment in the water absorption both in distilled water and salted solutions as well. The newly developed superabsorbent was applied as a support for soil nutrients and their controlled release in soil was studied. The results proved efficiency of the superabsorbent to warrant appropriate release of the nutrients according to the time regulations set by European Committee of Normalization (ECN). Improved water retention was also an additional advantage.


2020 ◽  
Vol 4 (2) ◽  
pp. 23 ◽  
Author(s):  
Shin Hasegawa ◽  
Shinichi Sawada ◽  
Shinya Azami ◽  
Tokio Hagiwara ◽  
Akihiro Hiroki ◽  
...  

Hydrogen-permselective membranes were developed using a radiation-induced grafting method. Styrene (St) and acrylic acid (AAc) monomers were introduced into porous polyvinylidene fluoride (PVDF) membranes to obtain St- and AAc-grafted PVDF membranes with grafting degrees of 82% and 92%, respectively. The porosities of the grafted membranes were controlled in the range 30–40% by hot-press compression at 159 °C and 4 MPa. The hydrogen permeability was found to be of the order of 10−7 mol/m2∙s∙Pa, which was higher than the permeability for water vapor and nitrogen (oxygen model). The St- and AAc-grafted membranes exhibited 9.0 and 34 times higher permeability for H2 than for H2O and N2, respectively.


2019 ◽  
Vol 76 (12) ◽  
pp. 6371-6386 ◽  
Author(s):  
Yong-Chan Chung ◽  
Jin Cheol Bae ◽  
Jae Won Choi ◽  
Byoung Chul Chun

2018 ◽  
Vol 57 (4) ◽  
pp. 1188-1196 ◽  
Author(s):  
María Fernanda Stragliotto ◽  
Miriam C. Strumia ◽  
Cesar G. Gomez ◽  
Marcelo R. Romero

Sign in / Sign up

Export Citation Format

Share Document