Development and preparation of high-performance thermoplastic vulcanizates based on blends of natural rubber and thermoplastic polyurethanes

2012 ◽  
Vol 128 (4) ◽  
pp. 2358-2367 ◽  
Author(s):  
Ekwipoo Kalkornsurapranee ◽  
Charoen Nakason ◽  
Claudia Kummerlöwe ◽  
Norbert Vennemann
2020 ◽  
Vol 35 (2) ◽  
pp. 146-157
Author(s):  
B.-L. Yu ◽  
L.-C. Jiang ◽  
K. Huang ◽  
X.-L. Liu ◽  
X.-M. Shao ◽  
...  

2012 ◽  
Vol 85 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Md. Najib Alam ◽  
Swapan Kumar Mandal ◽  
Subhas Chandra Debnath

Abstract Several zinc dithiocarbamates (ZDCs) as accelerator derived from safe amine has been exclusively studied in the presence of thiazole-based accelerators to introduce safe dithiocarbamate in the vulcanization of natural rubber. Comparison has been made between conventional unsafe zinc dimethyldithiocarbamate (ZDMC) with safe novel ZDC combined with thizole-based accelerators in the light of mechanical properties. The study reveals that thiuram disulfide and 2-mercaptobenzothiazole (MBT) are always formed from the reaction either between ZDC and dibenzothiazyledisulfide (MBTS) or between ZDC and N-cyclohexyl-2-benzothiazole sulfenamide (CBS). It has been conclusively proved that MBT generated from MBTS or CBS reacts with ZDC and produces tetramethylthiuram disulfide. The observed synergistic activity has been discussed based on the cure and physical data and explained through the results based on high-performance liquid chromatography and a reaction mechanism. Synergistic activity is observed in all binary systems studied. The highest tensile strength is observed in the zinc (N-benzyl piperazino) dithiocarbamate-accelerated system at 3:6 mM ratios. In respect of tensile strength and modulus value, unsafe ZDMC can be successfully replaced by safe ZDCs in combination with thiazole group containing accelerator.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


Polymer ◽  
2021 ◽  
pp. 124142
Author(s):  
Jia-rui Hou ◽  
Sha-sha Huang ◽  
Ning Zhang ◽  
Da-ying Liu ◽  
Ze-jun Zhang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 478-487
Author(s):  
Yu Liu ◽  
Heliang Wang ◽  
Xiwei Guo ◽  
Mingyuan Yi ◽  
Lihong Wan ◽  
...  

Abstract With the emerging of sustainability, the fabrication of effective and eco-friendly agents for rubber industry has attracted extensive attention. In this study, a novel and nontoxic titanium dioxide-based vulcanization accelerator (xanthate-modified nanotitanium dioxide (TDSX)) with excellent antibacterial performance, for the first time, was synthesized under the catalyst of ceric ammonium nitrate. Notably, the thermal stability of xanthate was greatly enhanced after being grafted on titanium dioxide (TiO2) nanoparticles, in which the activation energy was increased from 6.4 to 92.5 kJ/mol, enabling the obtained TDSX with multiple functions, mainly consisting of fabulous vulcanization-promoting effects, reinforcing effects, antibacterial properties, and anti-ultraviolet aging effects for natural rubber (NR). Simultaneously, the TDSX can be effectively and uniformly dispersed in the rubber matrix along with the developed interface interaction between TDSX particles and rubber matrix. Compared to the traditional accelerators 2-mercaptobenzothiazole (M) system, the tensile strength and the tearing strength of NR/TDSX was improved by 26.3 and 40.4%, respectively. Potentially, our work for preparing green vulcanization accelerator can provide a new design strategy for multifunctional high performance elastomer materials.


Sign in / Sign up

Export Citation Format

Share Document