WPU/CB/GO nanocomposites: in situ polymerization preparation, thermal, and anticorrosion performance evaluation

2019 ◽  
Vol 137 (21) ◽  
pp. 48716 ◽  
Author(s):  
Liutong Hou ◽  
Ming Zhou ◽  
Yinhua Gu ◽  
Yiping Chen
2011 ◽  
Vol 399-401 ◽  
pp. 2083-2086
Author(s):  
Lian Zhong ◽  
Yan Hua Wang ◽  
Yong Hong Lu

In this study, conductive polyaniline (PANi)–titania (TiO2) nanocomposites with core–shell structure were prepared and their anticorrosion properties were investigated. PANi/nano-TiO2 composite were prepared by in situ polymerization of aniline monomer in the presence of TiO2 nanoparticles. The morphology and structure of the polymer nanocomposite was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. SEM and FTIR spectra measurements show that PANi and TiO2 nanoparticles are not simply blended or mixed up, and a strong interaction exists at the interface of nano-TiO2 and PANi. From the anticorrosion investigation in 3.5%NaCl, it is revealed that the protective performance of epoxy paint containing PANi/nano-TiO2 composite is significantly improved than PANi or a mixture of polyaniline and nano-TiO2. From the improved anticorrosion performance, it also indicate that PANi and TiO2 nanoparticles are not simply blended or mixed up, the strong interaction exists at the interface of PANi and nano-TiO2. It is the strong interaction that results in the coordinated effect and more excellent anticorrosion performance.


2021 ◽  
Vol 166 ◽  
pp. 113495
Author(s):  
Andrey Pereira Acosta ◽  
Kelvin Techera Barbosa ◽  
Sandro Campos Amico ◽  
André Luiz Missio ◽  
Rafael de Avila Delucis ◽  
...  

Author(s):  
Andrey Acosta ◽  
Ezequiel Gallio ◽  
Paula Zanatta ◽  
Henrique Schulz ◽  
Rafael de Avila Delucis ◽  
...  

2020 ◽  
Vol 27 (1) ◽  
pp. 204-215
Author(s):  
Hongkai Zhao ◽  
Dengchao Zhang ◽  
Yingshuang Li

AbstractIn this work, we modified nylon 6 with liquid rubber by in-situ polymerization. The infrared analysis suggested that HDI urea diketone is successfully blocked by caprolactam after grafting on hydroxyl of HTPB, and the rubber-modified nylon copolymer is generated by the anionic polymerization. The impact section analysis indicated the rubber-modified nylon 6 resin exhibited an alpha crystal form.With an increase in the rubber content, nylon 6 was more likely to generate stable α crystal. Avrami equation was a good description of the non-isothermal crystallization kinetics of nylon-6 and rubber-modified nylon-6 resin. Moreover, it is found that the initial crystallization temperature of nylon-6 chain segment decreased due to the flexible rubber chain segment. n value of rubber-modified nylon-6 indicated that its growth was the coexistence of two-dimensional discoid and three-dimensional spherulite growth. Finally, the addition of the rubber accelerated the crystallization rate of nylon 6.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 474
Author(s):  
Ioannis S. Tsagkalias ◽  
Alexandra Loukidi ◽  
Stella Chatzimichailidou ◽  
Constantinos E. Salmas ◽  
Aris E. Giannakas ◽  
...  

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.


Sign in / Sign up

Export Citation Format

Share Document