Effects of lipopolysaccharide and juvenile hormone III treatments on cell growth and gene expression in the Ceratitis capitata (Diptera: Tephritidae) CCE/CC128 cell line

2019 ◽  
Vol 102 (4) ◽  
Author(s):  
Andrés García‐Reina ◽  
Elisabetta Rossi ◽  
José Galián
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chong Wang ◽  
Luyao Zhang ◽  
Liangru Ke ◽  
Weiyue Ding ◽  
Sizun Jiang ◽  
...  

AbstractPrimary effusion lymphoma (PEL) has a very poor prognosis. To evaluate the contributions of enhancers/promoters interactions to PEL cell growth and survival, here we produce H3K27ac HiChIP datasets in PEL cells. This allows us to generate the PEL enhancer connectome, which links enhancers and promoters in PEL genome-wide. We identify more than 8000 genomic interactions in each PEL cell line. By incorporating HiChIP data with H3K27ac ChIP-seq data, we identify interactions between enhancers/enhancers, enhancers/promoters, and promoters/promoters. HiChIP further links PEL super-enhancers to PEL dependency factors MYC, IRF4, MCL1, CCND2, MDM2, and CFLAR. CRISPR knock out of MEF2C and IRF4 significantly reduces MYC and IRF4 super-enhancer H3K27ac signal. Knock out also reduces MYC and IRF4 expression. CRISPRi perturbation of these super-enhancers by tethering transcription repressors to enhancers significantly reduces target gene expression and reduces PEL cell growth. These data provide insights into PEL molecular pathogenesis.


2019 ◽  
Vol 25 (9) ◽  
pp. 572-585 ◽  
Author(s):  
Lynda K Harris ◽  
Priyadarshini Pantham ◽  
Hannah E J Yong ◽  
Anita Pratt ◽  
Anthony J Borg ◽  
...  

Abstract Fetal growth restriction (FGR) is caused by poor placental development and function early in gestation. It is well known that placentas from women with FGR exhibit reduced cell growth, elevated levels of apoptosis and perturbed expression of the growth factors, cytokines and the homeobox gene family of transcription factors. Previous studies have reported that insulin-like growth factor-2 (IGF2) interacts with its receptor-2 (IGF2R) to regulate villous trophoblast survival and apoptosis. In this study, we hypothesized that human placental IGF2R-mediated homeobox gene expression is altered in FGR and contributes to abnormal trophoblast function. This study was designed to determine the association between IGF2R, homeobox gene expression and cell survival in pregnancies affected by FGR. Third trimester placentas were collected from FGR-affected pregnancies (n = 29) and gestation matched with control pregnancies (n = 30). Functional analyses were then performed in vitro using term placental explants (n = 4) and BeWo trophoblast cells. mRNA expression was determined by real-time PCR, while protein expression was examined by immunoblotting and immunohistochemistry. siRNA transfection was used to silence IGF2R expression in placental explants and the BeWo cell-line. cDNA arrays were used to screen for downstream targets of IGF2R, specifically homeobox gene transcription factors and apoptosis-related genes. Functional effects of silencing IGF2R were then verified by β-hCG ELISA, caspase activity assays and a real-time electrical cell-impedance assay for differentiation, apoptosis and cell growth potential, respectively. IGF2R expression was significantly decreased in placentas from pregnancies complicated by idiopathic FGR (P < 0.05 versus control). siRNA-mediated IGF2R knockdown in term placental explants and the trophoblast cell line BeWo resulted in altered expression of homeobox gene transcription factors, including increased expression of distal-less homeobox gene 5 (DLX5), and decreased expression of H2.0-Like Homeobox 1 (HLX) (P < 0.05 versus control). Knockdown of IGF2R transcription increased the expression and activity of caspase-6 and caspase-8 in placental explants, decreased BeWo proliferation and increased BeWo differentiation (all P < 0.05 compared to respective controls). This is the first study linking IGF2R placental expression with changes in the expression of homeobox genes that control cellular signalling pathways responsible for increased trophoblast cell apoptosis, which is a characteristic feature of FGR.


2015 ◽  
Vol 67 (8) ◽  
pp. 1316-1325 ◽  
Author(s):  
Yi Jiang ◽  
Guo-Hao Wu ◽  
Guo-Dong He ◽  
Qiu-Lin Zhuang ◽  
Qiu-Lei Xi ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 860-860 ◽  
Author(s):  
Michele Milella ◽  
Maria Rosaria Ricciardi ◽  
Paola Bergamo ◽  
Maria Cristina Scerpa ◽  
Jacopo Gervasoni ◽  
...  

Abstract In hematologic malignancies, constitutive activation of the Raf/MEK/ERK pathway is frequently observed, conveys a poor prognosis, and constitutes a promising target for therapeutic intervention. Indeed, we have recently demonstrated that selective MEK-I potently inhibit the growth of AML cell lines and ex vivo-cultured primary AML blasts (Blood2006, 108:254). However, these effects are mostly related to the inhibition of cell cycle progression, while apoptosis induction requires higher concentrations of the inhibitors and longer times of exposure. Thus, we investigated MEK-I-induced changes in phospho-protein expression and gene expression profiles, in order to identify relevant downstream targets and to design rational MEK-I-based combination strategies. Analysis of phosphorylation levels of 18 different target proteins performed in OCI-AML3 cells indicated that MEK blockade induces, among other effects, an over-activation of RAF and MEK, suggesting the interruption of a negative feedback loop. Moreover, gene expression profiling indicated that, in the same cellular model, MEK-I induced upregulation of the Flt-3 receptor. Based on these observations, as well as on recent evidence indicating that the Raf inhibitor sorafenib directly inhibits signaling through Flt-3 (JNCI2008, 100:184), experiments were performed in OCI-AML3 and MOLM-13 (which harbors a Flt3 ITD) cells to test the activity of MEK-I in combination with sorafenib. Simultaneous inhibition of Flt3/Raf and MEK resulted in the synergistic inhibition of cell growth, as measured by isobologram analysis (Chou–Talalay method) in both model systems, with combination indexes (CI) of 0.12 and 0.48 for OCI-AML3 and MOLM-13 cells, respectively. Neither sorafenib nor MEK-I induced apoptosis in either cell line when used alone; however, apoptosis was observed in up to 50% of the cells with the combined treatment. Based on our previous experience, as well as on the ability of MEK-I to modulate the expression, among others, of genes controlling mitochondrial homeostasis (e.g. PPIF, GRPEL1), we next investigated the impact of simultaneous inhibition of the MEK and Bcl-2 pathways in AML cells. Exposure of OCI-AML3 and MOLM-13 cells to a combination of MEK-I and the Bcl-2/Bcl-xL inhibitor, ABT-737 (kindly provided by Abbott Laboratories) synergistically inhibited cell growth, with CI ranging from 0.45 to 0.04 in OCI-AML3 and from 0.75 to 0.14 in MOLM-13, respectively. In both cellular models, ABT-737dose-dependently induced apoptosis, while MEK-I, at the concentrations used in combination experiments, did not appreciably increase apoptotic cell death; however, simultaneous Bcl- 2/Bcl-xL inhibition and MEK blockade resulted in the massive induction of apoptosis (up to 85% and 67% net apoptosis induction in OCI-AML3 and MOLM-13 cells, respectively). Such pro-apoptotic interaction was highly synergistic with CI of 0.18 and 0.16 in OCIAML3 and MOLM-13 cells, respectively. In contrast, combination with MEK-I did not appreciably sensitize the MEK-I-resistant cell line U937 to either sorafenib- or ABT-737- induced growth inhibitory and pro-apoptotic effects. Overall these results support the role of the Raf/MEK/ERK kinase module as a prime target for the molecular therapy of AML and suggest that both “vertical” and “lateral” combination strategies based on MEK inhibition may produce highly synergistic anti-leukemic effects.


2022 ◽  
Vol 14 (12) ◽  
Author(s):  
Masumeh Sanaei ◽  
Fraidoon Kavoosi

Background: Cyclin-dependent kinase inhibitors (CKIs) are the negative regulator of cell cycle progression, which inhibits cyclin-cdk complexes, resulting in cell cycle arrest. Recently, we evaluated the effect of 5-Aza-CdR on DNMT1 gene expression in the WCH-17 hepatocellular carcinoma (HCC) cell line. Objectives: The current study was designed to analyze the effects of 5-aza-2'–deoxycytidine (5-Aza-CdR, decitabine), 5-azacytidine (5-AzaC, vidaza), and 5'-fluoro-2'-deoxycytidine (FdCyd) on INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 gene expression, apoptosis induction, and cell growth inhibition in colon cancer HCT-116 cell line. Methods: The colon cancer HCT-116 cell line was treated with 5-azaC, 5-Aza-CdR, and FdCyd at 24 and 48h. To determine colon cancer HCT-116 cell viability, cell apoptosis, and the relative expression level of the INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 genes, MTT assay, flow cytometry, and qRT-PCR were done, respectively. Results: 5-azaC, 5-Aza-CdR, and FdCyd significantly inhibited colon cancer HCT-116 cell growth and induced apoptosis. Besides, they significantly increased CIP/KIP (p21CIP1, p27KIP1, and p57KIP2) and INK4 (p14ARF, p15INK4b, and p16INK4a) and decreased DNMT1 gene expression. Besides, minimal and maximal apoptosis were seen in the groups treated with FdCyd and 5-Aza-CdR, respectively. The IC50 for CAF for FdCyd was 1.72 ± 0.23 and 1.63 ± 0.21μM at 24 and 48h, respectively. The IC50 for CAF for 5-AzaC was 2.18 ± 0.33 and 1.98 ± 0.29 μM at 24 and 48h, respectively. The IC50 for CAF for 5-Aza-CdR was 4.08 ± 0.61 and 3.18 ± 0.50 μM at 24 and 48h, respectively. Conclusions: The 5-azac, 5-Aza-CdR, and FdCyd can reactivate the INK4a/ARF and CIP/KIP families through inhibition of DNMT1 activity.


Author(s):  
Masumeh Sanaei ◽  
Fraidoon Kavoosi

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well characterized DNA demetilating and histone deacetylase inhibitor drugs are 5-aza-2ˈ-deoxycytidine (5-Aza-CdR) and valproic acid (VPA), respectively. The purpose of the current study was to analyze the effects of 5-Aza-CdR and VPA on cell growth, apoptosis, and DNMT1 gene expression in the WCH-17 hepatocellular carcinoma (HCC) cell line. Materials and Methods: In this descriptive analytical study, MTT assay, flow cytometry assay, and Quantitative Real-Time RT-PCRwere done to evaluate proliferative and apoptotic effects and also gene expression. Results: Both compounds inhibited the cell growth and induced apoptosis significantly in a dose and time depended fashion. Additionally, 5-Aza-CdR down-regulated DNMT1 gene expression. The relative expression of DNMT1 was 0.40 and 0.20 (P < 0.001) at different times, respectively. The percentage of VPA- treated apoptotic cells were reduced by about 28 and 34 % (P˂0.001) and that of 5-Aza-CdR-treated were reduced by about 34 and 44 % (P˂0.001) after treatment time periods. Conclusion: In the current study, it was observed that 5-Aza-CdR and VPA could significantly inhibit the growth of WCH-17 cell and played a significant role in apoptosis. It was also found that 5-Aza-CdR could decrease DNMT1 gene expression.


Sign in / Sign up

Export Citation Format

Share Document