scholarly journals Recognition of Amino Acid Motifs, Rather Than Specific Proteins, by Human Plasma Cell–Derived Monoclonal Antibodies to Posttranslationally Modified Proteins in Rheumatoid Arthritis

2019 ◽  
Vol 71 (2) ◽  
pp. 196-209 ◽  
Author(s):  
Johanna Steen ◽  
Björn Forsström ◽  
Peter Sahlström ◽  
Victoria Odowd ◽  
Lena Israelsson ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 657 ◽  
Author(s):  
Francesco Carubbi ◽  
Alessia Alunno ◽  
Roberto Gerli ◽  
Roberto Giacomelli

Post-translational modifications (PTM) are chemical changes mostly catalyzed by enzymes that recognize specific target sequences in specific proteins. These modifications play a key role in regulating the folding of proteins, their targeting to specific subcellular compartments, their interaction with ligands or other proteins, and eventually their immunogenic properties. Citrullination is the best characterized PTM in the field of rheumatology, with antibodies anticyclic citrullinated peptides being the gold standard for the diagnosis of rheumatoid arthritis (RA). In recent years, growing evidence supports not only that a wide range of proteins are subject to citrullination and can trigger an autoimmune response in RA, but also that several other PTMs such as carbamylation and acetylation occur in patients with this disease. This induces a wide spectrum of autoantibodies, as biomarkers, with different sensitivity and specificity for diagnosis, which may be linked to peculiar clinical manifestations and/or response to treatment. The purpose of this review article is to critically summarize the available literature on antibodies against post-translationally modified proteins, in particular antibodies against citrullinated proteins (ACPA) and antibodies against modified proteins (AMPA), and outline their diagnostic and prognostic role to be implemented in clinical practice for RA patients.


1993 ◽  
Vol 70 (03) ◽  
pp. 438-442 ◽  
Author(s):  
B Grøn ◽  
C Filion-Myklebust ◽  
S Bjørnsen ◽  
P Haidaris ◽  
F Brosstad

SummaryFibrinogen and fibrin related chains in reduced human plasma as well as the bonds interlinking partially cross-linked fibrin from plasma clots have been studied by means of 1D- and 2D electrophoresis and Western blotting. Immunovisualization of reduced plasma or partially cross-linked fibrin with monoclonal antibodies specific for the α-chains or the γ-chains have shown that several bands represent material belonging to both chains. In order to decide whether these bands constitute αγ-chain hybrids or superimposed α- and γ-chain dimers, the cross-linked material was separated according to both isoelectric point (pI) and molecular weight (MW) using Pharmacia’s Multiphor II system. Western blotting of the second dimension gels revealed that partially cross-linked fibrin contains αsγt-chain hybrids and γ- polymers, in addition to the well-known γ-dimers and α-polymers. The main αsγt-chain hybrid has a pI between that of the α- and the γ-chains, a MW of about 200 kDa and contains Aα-chains with intact fibrinopeptide A (FPA). It was also observed that soluble fibrinogen/fibrin complexes as well as partially cross-linked fibrin contain degraded α-dimers with MWs close to the γ-dimers. These findings demonstrate that factor XIII-catalyzed cross-linking of fibrin is a more complex phenomenon than earlier recognized.


2018 ◽  
Vol 64 (4) ◽  
pp. 504-507
Author(s):  
Vladimir Klimovich ◽  
Natalya Vartanyan ◽  
Anastasiya Stolbovaya ◽  
Lidiya Terekhina ◽  
Olga Shashkova ◽  
...  

During last years monoclonal antibodies (MAB) directed against vascular endothelium markers demonstrated their efficiency for visualization and targeted delivery of therapeutic drugs to tumors. Endoglin (CD105) which serves as a key element that determines endothelial cells quiescence or activation is one of such markers. Endoglin is highly expressed on the vascular endothelium of growing tumors. A first panel of MAB against endoglin in our country was produced at the hybridoma technology laboratory of RRC RST named after A.M. Granov. On the basis of these MAB ELISA was created allowing detection of endoglin in human plasma and other biological fluids. Several MAB had been shown to bind endoglin on the membrane of the cultured endothelial cells and to persist there for several hours. During the first 30 min after binding some of the immune complexes “endoglin-MAB” were internalized into the cytoplasm and were found included in the endosomes. In future these MAB can be used to create the reagents for the addressed delivery of isotope tags both on the membrane and into the cytoplasm of endothelial cells.


2001 ◽  
Vol 2 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Renate Burger ◽  
Andreas Guenther ◽  
Frank Bakker ◽  
Marc Schmalzing ◽  
Sabrina Bernand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document