scholarly journals Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

2009 ◽  
Vol 330 (5) ◽  
pp. 482-492
Author(s):  
A. Koeltzsch ◽  
M. Mugrauer ◽  
St. Raetz ◽  
T.O.B. Schmidt ◽  
T. Roell ◽  
...  
2018 ◽  
Vol 609 ◽  
pp. A87 ◽  
Author(s):  
B. Nisini ◽  
S. Antoniucci ◽  
J. M. Alcalá ◽  
T. Giannini ◽  
C. F. Manara ◽  
...  

Mass loss from jets and winds is a key ingredient in the evolution of accretion discs in young stars. While slow winds have been recently extensively studied in T Tauri stars, little investigation has been devoted on the occurrence of high velocity jets and on how the two mass-loss phenomena are connected with each other, and with the disc mass accretion rates. In this framework, we have analysed the [O i]6300 Å  line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and σ Orionis star forming regions. The stars were observed with the X-shooter spectrograph at the Very Large Telescope and have mass accretion rates spanning from 10-12 to 10-7M⊙ yr-1. The line profile was deconvolved into a low velocity component (LVC, | Vr | < 40 km s-1) and a high velocity component (HVC, | Vr | > 40 km s-1), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The fraction of HVC detections slightly increases (i.e. 39%) in the sub-sample of stronger accretors (i.e. with log (Lacc/L⊙) >−3). The [O i]6300 Å  luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. L∗, M∗, Lacc, Ṁacc), with similar slopes for the two components. The line luminosity correlates better (i.e. has a lower dispersion) with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass ejection rates (Ṁjet) measured from the detected HVC [O i]6300 Å  line luminosity span from ~10-13 to ~10-7M⊙ yr-1. The corresponding Ṁjet/Ṁacc  ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a Ṁjet/Ṁacc  ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase. This will be possible in the near future thanks to space facilities such as the James Webb space telescope (JWST).


2015 ◽  
Vol 10 (S314) ◽  
pp. 191-192
Author(s):  
P. A. B. Galli ◽  
C. Bertout ◽  
R. Teixeira ◽  
C. Ducourant

AbstractIn a recent study, we derived individual distances for a sample of pre-main sequence stars that define the comoving association of young stars in the Lupus star-forming region. Here, we use these new distances to investigate the mass and age distributions of Lupus T Tauri stars and derive the average disk lifetime in the Lupus association based on an empirical disk model.


1998 ◽  
Vol 11 (1) ◽  
pp. 423-424
Author(s):  
Motohide Tamura ◽  
Yoichi Itoh ◽  
Yumiko Oasa ◽  
Alan Tokunaga ◽  
Koji Sugitani

Abstract In order to tackle the problems of low-mass end of the initial mass function (IMF) in star-forming regions and the formation mechanisms of brown dwarfs, we have conducted deep infrared surveys of nearby molecular clouds. We have found a significant population of very low-luminosity sources with IR excesses in the Taurus cloud and the Chamaeleon cloud core regions whose extinction corrected J magnitudes are 3 to 8 mag fainter than those of typical T Tauri stars in the same cloud. Some of them are associated with even fainter companions. Follow-up IR spectroscopy has confirmed for the selected sources that their photospheric temperature is around 2000 to 3000 K. Thus, these very low-luminosity young stellar sources are most likely very low-mass T Tauri stars, and some of them might even be young brown dwarfs.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2019 ◽  
Vol 487 (2) ◽  
pp. 1765-1776 ◽  
Author(s):  
Somnath Dutta ◽  
Soumen Mondal ◽  
Santosh Joshi ◽  
Ramkrishna Das

ABSTRACT We present optical I-band light curves of the stars towards a star-forming region Cygnus OB7 from 17-night photometric observations. The light curves are generated from a total of 381 image frames with very good photometric precision. From the light curves of 1900 stars and their periodogram analyses, we detect 31 candidate variables including five previously identified. 14 out of 31 objects are periodic and exhibit the rotation rates in the range of 0.15–11.60 d. We characterize those candidate variables using optical/infrared colour–colour diagram and colour–magnitude diagram (CMD). From spectral indices of the candidate variables, it turns out that four are probably Classical T-Tauri stars (CTTSs), rest remain unclassified from present data, they are possibly field stars or discless pre-main-sequence stars towards the region. Based on their location on the various CMDs, the ages of two T Tauri Stars were estimated to be ∼5 Myr. The light curves indicate at least five of the periodic variables are eclipsing systems. The spatial distribution of young variable candidates on Planck 857 GHz (350 $\mu$m) and 2MASS (Two Micron All Sky Survey) Ks images suggest that at least two of the CTTSs are part of the active star-forming cloud Lynds 1003.


1992 ◽  
Vol 135 ◽  
pp. 1-9
Author(s):  
A. Ghez ◽  
G. Neugebauer ◽  
K. Matthews

AbstractWe present the results of a magnitude limited (K≤8.5 mag) multiplicity survey of T Tauri stars in the two nearest star forming regions, Taurus-Auriga and Ophiuchus-Scorpius (D = 150 pc), observable from the northern hemisphere. Each of the 70 stars in the sample was imaged at 2.2 μm using two-dimensional speckle interferometry resulting in a survey sensitive to binary stars with separations ranging from 0.″09 to about 2″.5.The frequency of double stars with separation in this range is 46±8%. A division between the classical T Tauri stars and the weak-lined T Tauri stars shows no distinction. Furthermore, no difference is observed between the binary frequencies in the two star forming regions although the clouds have very different properties.Given the limited angular separation range that this survey is sensitive to, both the spectroscopic and wide binaries will be missed. The rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions.


2001 ◽  
Vol 200 ◽  
pp. 265-274 ◽  
Author(s):  
Chris D. Koresko ◽  
Christoph Leinert

Infrared companions are young stellar objects with unusual properties gravitationally bound to more or less typical T Tauri stars. As such they promise to be the source of information on either a particular phase in the development of young stars or on a particular mode of development. We discuss the observed properties of infrared companions as well as attempts to explain their physical status with the aim to see how much of solid conclusion has been obtained so far.


2020 ◽  
Vol 494 (3) ◽  
pp. 4349-4356
Author(s):  
C Koen

ABSTRACT ‘Transiting Exoplanet Survey Satellite’ (TESS) photometry of CVSO 30 spanned 21.8 d, with a single large gap of 1.1 d. This allows alias-free determination of the two periodicities in the data. It is confirmed that both of these are non-sinusoidal: the dominant P1 = 0.4990 d has two detectable harmonics and P2 = 0.4486 d has seven. The large number of harmonics in the second periodicity characterizes a very complex light curve shape. One of the features in the light curve is a sharp dip of duration ∼2 h: this is probably the source of the previously claimed planetary transit signature. The star is a member of a small group of T Tauri stars with complex light curves, which have recently been exhaustively studied using Kepler and TESS observations. The two non-commensurate periods are most simply interpreted as being from two stars, i.e. CVSO 30 is probably a binary.


2019 ◽  
Vol 486 (4) ◽  
pp. 5526-5527
Author(s):  
C A Hill ◽  
C P Folsom ◽  
J-F Donati ◽  
G J Herczeg ◽  
G A J Hussain ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document