scholarly journals Salt‐tolerant cation exchanger‐containing sulfate groups as a viable alternative for mixed‐mode type and heparin‐based affinity resins

2021 ◽  
pp. 2100100
Author(s):  
Marija Begić ◽  
Suzana Pečenković ◽  
Martina Šrajer Gajdošik ◽  
Djuro Josić ◽  
Egbert Müller
Adsorption ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. 293-307 ◽  
Author(s):  
Pedro Ferreira Gomes ◽  
José Miguel Loureiro ◽  
Alírio E. Rodrigues

2018 ◽  
Vol 20 (1) ◽  
pp. 65-74
Author(s):  
Xuemei M. He ◽  
Carsten Voß ◽  
Jidong Li

Background: Mixed-mode chromatography is becoming an important tool for downstream process purification, as it provides the selectivity and robustness unmatched by conventional singlemode chromatographic methods. The joint action of multiple functionalities present on the ligands of mixed-mode chromatography matrices effectively enhances the separation of target molecules from impurities. Material and Methods: Using Nuvia cPrime as an example, we elucidate the separation principles of hydrophobic cation exchange mixed-mode chromatography and its difference from traditional strong cation exchangers. We have developed a Nuvia cPrime based polish purification step specifically for the removal of a major process contaminant, which has an isoelectric point similar to that of the target monoclonal IgM molecule. Additional purification was accomplished using a second mixed-mode chromatography column packed with Ceramic Hydroxyapatite. Conclusion: The monoclonal IgM prepared with this new process fully retained its biological activity and was free of high molecular weight aggregates, a product quality that was not achievable in previous attempts using traditional ion exchange or hydrophobic interaction chromatography.


Adsorption ◽  
2018 ◽  
Vol 24 (8) ◽  
pp. 745-755
Author(s):  
Pedro Ferreira Gomes ◽  
José Miguel Loureiro ◽  
Alírio E. Rodrigues

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 865 ◽  
Author(s):  
Abuzar Kabir ◽  
Victoria Samanidou

Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2017 ◽  
Vol 24 (1) ◽  
pp. 46-72
Author(s):  
Jacob Tootalian

Ben Jonson's early plays show a marked interest in prose as a counterpoint to the blank verse norm of the Renaissance stage. This essay presents a digital analysis of Jonson's early mixed-mode plays and his two later full-prose comedies. It examines this selection of the Jonsonian corpus using DocuScope, a piece of software that catalogs sentence-level features of texts according to a series of rhetorical categories, highlighting the distinctive linguistic patterns associated with Jonson's verse and prose. Verse tends to employ abstract, morally and emotionally charged language, while prose is more often characterized by expressions that are socially explicit, interrogative, and interactive. In the satirical economy of these plays, Jonson's characters usually adopt verse when they articulate censorious judgements, descending into prose when they wade into the intractable banter of the vicious world. Surprisingly, the prosaic signature that Jonson fashioned in his earlier drama persisted in the two later full-prose comedies. The essay presents readings of Every Man Out of his Humour and Bartholomew Fair, illustrating how the tension between verse and prose that motivated the satirical dynamics of the mixed-mode plays was released in the full-prose comedies. Jonson's final experiments with theatrical prose dramatize the exhaustion of the satirical impulse by submerging his characters almost entirely in the prosaic world of interactive engagement.


Sign in / Sign up

Export Citation Format

Share Document