Production and characterization of liquid-core capsules made from cross-linked acrylamide copolymers for biotechnological applications

2004 ◽  
Vol 86 (5) ◽  
pp. 563-572 ◽  
Author(s):  
A. Wyss ◽  
U. von Stockar ◽  
I.W. Marison
2018 ◽  
Vol 7 (2) ◽  
pp. 33-45
Author(s):  
Mohammad Shahedur Rahman ◽  
Rasheda Banu ◽  
Ripa Moni ◽  
Nazmul Islam ◽  
Mastura Khatun Ruma ◽  
...  

A new isolate was investigated from soil sample collected from Shahrasti upazilla of Chandpur district of Bangladesh. Based on the physico-chemical studies the strain was identified as gram positive Bacilli. Moleculer characterization of the strain was identified as Bacillus aryabhattai which is the first report in Bangladesh. The strain can survive in extreme conditions of salt, temperature and pH. This strain was further characterized and screened for the ability to produce useful enzymes. The optimum temperature for growth and production of these enzymes was within the temperature range 35oC to 40oC. The pH was found to be 7 for its growth and production of different enzymes when investigated over 48 h of incubation. The isolate produced various extracellular enzymes such as α-amylases, cellulases, β-glucosidases, lipases and proteases. The findings of this study provide useful information of the new strain that has potential biotechnological applications. Jahangirnagar University J. Biol. Sci. 7(2): 33-45, 2018 (December)


2020 ◽  
Vol 8 (6) ◽  
pp. 796
Author(s):  
Ivana Cavello ◽  
María Sofía Urbieta ◽  
Sebastián Cavalitto ◽  
Edgardo Donati

Geothermal areas are the niches of a rich microbial diversity that is not only part of the intangible patrimony of a country but also the source of many microbial species with potential biotechnological applications. Particularly, microbial species in geothermal areas in Argentina have been scarcely explored regarding their possible biotechnological uses. The purpose of this work was to explore the proteolytic and keratinolytic enzymatic potential of microorganisms that inhabit in the Domuyo geothermal area in the Neuquén Province. To this end, we did enrichment cultures from two high-temperature natural samples in mineral media only supplemented with whole chicken feathers. After the isolation and the phylogenetic and morphologic characterization of different colonies, we obtained a collection of Bacillus cytotoxicus isolates, a species with no previous report of keratinolytic activity and only reported in rehydrated meals connected with food poisoning outbreaks. Its natural habitat has been unknown up to now. We characterized the proteolytic and keratinolytic capacities of the B. cytotoxicus isolates in different conditions, which proved to be remarkably high compared with those of other similar species. Thus, our work represents the first report of the isolation as well as the keratinolytic capacity characterization of strains of B. cytotixicus obtained from a natural environment.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 459 ◽  
Author(s):  
Giorgio Maria Vingiani ◽  
Pasquale De Luca ◽  
Adrianna Ianora ◽  
Alan D.W. Dobson ◽  
Chiara Lauritano

Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.


2007 ◽  
Vol 46 (3) ◽  
pp. 389 ◽  
Author(s):  
Jonathan D. Suter ◽  
Ian M. White ◽  
Hongying Zhu ◽  
Xudong Fan

2020 ◽  
Vol 14 (3) ◽  
pp. 2157-2163
Author(s):  
Ahmed Anwar Al-Mulla ◽  
Ashraf Khalifa

Deciphering the biological resources across the Saudi niches is highly recommended for the prosperity. To this end, the aim of the current work was to isolate thermophilic bacteria from unexplored areas of Al-Ahsa region, and investigate their phenotypic characteristics. Three soil samples were collected from different desert sites of Al-Ahsa region. Thermophilic bacteria were isolated directly for soil samples into Thermus medium broth as a standard method. Single colonies of the actively growing bacterial isolates were preserved in 20% glycerol then kept at -80°C. The isolates were screened for production of thermostable enzymes using the commercially available kit API20E strip (bioMerieux, Marcy l’Etoile, France). Incubation were carried out at 50°C. It can be concluded that thermophilic bacteria in Al-Ahsa region harbor novel thermostable enzymes that might have biotechnological applications, in future.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Elisa Maria de Oliveira ◽  
Victor Hugo Gomes Sales ◽  
Marcelo Silva Andrade ◽  
Jerri Édson Zilli ◽  
Wardsson Lustrino Borges ◽  
...  

The objective of this research was to perform screening of biosurfactant-producing bacteria from Amapaense Amazon soils. Floodplain- and upland-forest soils of three municipalities of the Amapá state were isolated and identified. The isolates were cultured in nutrient broth with olive oil, and their extracts were evaluated according to drop collapse, oil dispersion, emulsification, and surface tension tests. From three hundred and eighteen isolates, the 43 bacteria were selected and identified by 16S rDNA gene sequencing, indicating the presence of three different genera, Serratia, Paenibacillus, and Citrobacter. The extracellular biosurfactant production pointed out the 15 most efficient bacteria that presented high emulsification capacity (E24 > 48%) and stability (less than 10% of drop after 72 h) and great potential to reduce the surface tension (varying from 49.40 to 34.50 mN·m−1). Cluster analysis classified genetically related isolates in different groups, which can be connected to differences in the amount or the sort of biosurfactants. Isolates from Serratia genus presented better emulsification capacity and produced a more significant surface tension drop, indicating a promising potential for biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document