scholarly journals Microalgal Enzymes with Biotechnological Applications

Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 459 ◽  
Author(s):  
Giorgio Maria Vingiani ◽  
Pasquale De Luca ◽  
Adrianna Ianora ◽  
Alan D.W. Dobson ◽  
Chiara Lauritano

Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.

2007 ◽  
Vol 158 (6) ◽  
pp. 128-141 ◽  
Author(s):  
Luuk Dorren ◽  
Frédéric Berger ◽  
Martin Jonsson ◽  
Michael Krautblatter ◽  
Michael Mölk ◽  
...  

To effectively prevent rockfall related disasters below forested slopes, silvicultural, eco-engineering, civil engineering or mixed techniques can be used. To do this in a cost-efficient manner it is necessary to know the following:1) where rockfall events occur and which magnitudes are likely, 2) to what extent the forest reduces the run-out distances, the jump heights and the energies of rocks falling downslope, and 3) how the protective function of forests could be improved. This paper gives an overview of the current scientific knowledge and methods that are applied by practitioners who deal with rockfall and forests protecting against it. Efficient ways to derive information on the probable magnitude and frequency of future rockfall events from the source and deposit area are described. Subsequently, the scientific knowledge on the energy absorption capacity of single trees and the currently available knowledge on the protective function of forest stands against rockfall are presented. Then easy-to-use tools and simulation models for rockfall hazard assessment on forested slopes are described. Finally, this paper identifies the most important challenges to be tackled in the field of integrated rockfall-forest research.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Folasade M. Olajuyigbe ◽  
Chidinma M. Nlekerem ◽  
Olusola A. Ogunyewo

Production ofβ-glucosidase fromFusarium oxysporumwas investigated during degradation of some cellulosic substrates (Avicel,α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production ofβ-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. Theβ-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield ofβ-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation.β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity ofβ-glucosidase was enhanced by Mn2+and Fe2+with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown byβ-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 549 ◽  
Author(s):  
Khuat ◽  
Bui ◽  
Tran ◽  
Truong ◽  
Nguyen ◽  
...  

2-Methylketones are involved in plant defense and fragrance and have industrial applications as flavor additives and for biofuel production. We isolated three genes from the crop plant Solanum melongena (eggplant) and investigated these as candidates for methylketone production. The wild tomato methylketone synthase 2 (ShMKS2), which hydrolyzes β-ketoacyl-acyl carrier proteins (ACP) to release β-ketoacids in the penultimate step of methylketone synthesis, was used as a query to identify three homologs from S. melongena: SmMKS2-1, SmMKS2-2, and SmMKS2-3. Expression and functional characterization of SmMKS2s in E. coli showed that SmMKS2-1 and SmMKS2-2 exhibited the thioesterase activity against different β-ketoacyl-ACP substrates to generate the corresponding saturated and unsaturated β-ketoacids, which can undergo decarboxylation to form their respective 2-methylketone products, whereas SmMKS2-3 showed no activity. SmMKS2-1 was expressed at high level in leaves, stems, roots, flowers, and fruits, whereas expression of SmMKS2-2 and SmMKS2-3 was mainly in flowers and fruits, respectively. Expression of SmMKS2-1 was induced in leaves by mechanical wounding, and by methyl jasmonate or methyl salicylate, but SmMKS2-2 and SmMKS2-3 genes were not induced. SmMKS2-1 is a candidate for methylketone-based defense in eggplant, and both SmMKS2-1 and SmMKS2-2 are novel MKS2 enzymes for biosynthesis of methylketones as feedstocks to biofuel production.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8792 ◽  
Author(s):  
Ahmad Raza ◽  
Ratnasri Pothula ◽  
Heba Abdelgaffar ◽  
Saira Bashir ◽  
Juan Luis Jurat-Fuentes

Background The identification and characterization of novel β-glucosidase genes has attracted considerable attention because of their valuable use in a variety of industrial applications, ranging from biofuel production to improved digestibility of animal feed. We previously isolated a fiber-degrading strain of Bacillus tequelensis from buffalo dung samples, and the goal of the current work was to identify β-glucosidase genes in this strain. We describe the cloning and expression of a new β-glucosidase gene (Bteqβgluc) from Bacillus tequelensis strain BD69 in bacterial and yeast hosts. The recombinant Bteqβgluc were used to characterize specificity and activity parameters, and candidate active residues involved in hydrolysis of different substrates were identified through molecular docking. Methods The full length Bteqβgluc gene was cloned and expressed in Escherichia coli and Pichia pastoris cultures. Recombinant Bteqβgluc proteins were purified by immobilized metal affinity or anion exchange chromatography and used in β-glucosidase activity assays measuring hydrolysis of ρ-nitrophenyl-β-D-glucopyranoside (pNPG). Activity parameters were determined by testing relative β-glucosidase activity after incubation under different temperature and pH conditions. Candidate active residues in Bteqβgluc were identified using molecular operating environment (MOE) software. Results The cloned Bteqβgluc gene belongs to glycoside hydrolase (GH) family 4 and encoded a 54.35 kDa protein. Specific activity of the recombinant β-glucosidase was higher when expressed in P. pastoris (1,462.25 U/mg) than in E. coli (1,445.09 U/mg) hosts using same amount of enzyme. Optimum activity was detected at pH 5 and 50 °C. The activation energy (Ea) was 44.18 and 45.29 kJ/mol for Bteqβgluc produced by P. pastoris and E. coli, respectively. Results from other kinetic parameter determinations, including pKa for the ionizable groups in the active site, Gibbs free energy of activation (ΔG‡), entropy of activation (ΔS‡), Michaelis constant (Km) and maximum reaction velocity (Vmax) for pNPG hydrolysis support unique kinetics and functional characteristics that may be of interest for industrial applications. Molecular docking analysis identified Glu, Asn, Phe, Tyr, Thr and Gln residues as important in protein-ligand catalytic interactions.


2020 ◽  
Vol 17 (2) ◽  
pp. 85-89
Author(s):  
Francisco J. Hidalgo ◽  
Nathan A.P. Lorentz ◽  
TinTin B. Luu ◽  
Jonathan D. Tran ◽  
Praveen D. Wickremasinghe ◽  
...  

: Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the exchange dynamics of the dithiomaleimide-functionalized sugar end groups.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingen Li ◽  
Shuying Gu ◽  
Zhen Zhao ◽  
Bingchen Chen ◽  
Qian Liu ◽  
...  

Abstract Background Lignocellulosic biomass has long been recognized as a potential sustainable source for industrial applications. The costs associated with conversion of plant biomass to fermentable sugar represent a significant barrier to the production of cost-competitive biochemicals. Consolidated bioprocessing (CBP) is considered a potential breakthrough for achieving cost-efficient production of biomass-based fuels and commodity chemicals. During the degradation of cellulose, cellobiose (major end-product of cellulase activity) is catabolized by hydrolytic and phosphorolytic pathways in cellulolytic organisms. However, the details of the two intracellular cellobiose metabolism pathways in cellulolytic fungi remain to be uncovered. Results Using the engineered malic acid production fungal strain JG207, we demonstrated that the hydrolytic pathway by β-glucosidase and the phosphorolytic pathway by phosphorylase are both used for intracellular cellobiose metabolism in Myceliophthora thermophila, and the yield of malic acid can benefit from the energy advantages of phosphorolytic cleavage. There were obvious differences in regulation of the two cellobiose catabolic pathways depending on whether M. thermophila JG207 was grown on cellobiose or Avicel. Disruption of Mtcpp in strain JG207 led to decreased production of malic acid under cellobiose conditions, while expression levels of all three intracellular β-glucosidase genes were significantly up-regulated to rescue the impairment of the phosphorolytic pathway under Avicel conditions. When the flux of the hydrolytic pathway was reduced, we found that β-glucosidase encoded by bgl1 was the dominant enzyme in the hydrolytic pathway and deletion of bgl1 resulted in significant enhancement of protein secretion but reduction of malate production. Combining comprehensive manipulation of both cellobiose utilization pathways and enhancement of cellobiose uptake by overexpression of a cellobiose transporter, the final strain JG412Δbgl2Δbgl3 produced up to 101.2 g/L and 77.4 g/L malic acid from cellobiose and Avicel, respectively, which corresponded to respective yields of 1.35 g/g and 1.03 g/g, representing significant improvement over the starting strain JG207. Conclusions This is the first report of detailed investigation of intracellular cellobiose catabolism in cellulolytic fungus M. thermophila. These results provide insights that can be applied to industrial fungi for production of biofuels and biochemicals from cellobiose and cellulose.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


Sign in / Sign up

Export Citation Format

Share Document