Towards a fully synthetic substitute of alginate: Optimization of a thermal gelation/chemical cross-linking scheme (?tandem? gelation) for the production of beads and liquid-core capsules

2004 ◽  
Vol 88 (6) ◽  
pp. 740-749 ◽  
Author(s):  
F. Cellesi ◽  
W. Weber ◽  
M. Fussenegger ◽  
J.A. Hubbell ◽  
N. Tirelli
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1066 ◽  
Author(s):  
Tim Huber ◽  
Sean Feast ◽  
Simone Dimartino ◽  
Wanwen Cen ◽  
Conan Fee

Cellulose-based hydrogels were prepared by dissolving cellulose in aqueous sodium hydroxide (NaOH)/urea solutions and casting it into complex shapes by the use of sacrificial templates followed by thermal gelation of the solution. Both the gelling temperatures used (40–80 °C), as well as the method of heating by either induction in the form of a water bath and hot press or radiation by microwaves could be shown to have a significant effect on the compressive strength and modulus of the prepared hydrogels. Lower gelling temperatures and shorter heating times were found to result in stronger and stiffer gels. Both the effect of physical cross-linking via the introduction of additional non-dissolving cellulosic material, as well as chemical cross-linking by the introduction of epichlorohydrin (ECH), and a combination of both applied during the gelation process could be shown to affect both the mechanical properties and microstructure of the hydrogels. The added cellulose acts as a physical-cross-linking agent strengthening the hydrogen-bond network as well as a reinforcing phase improving the mechanical properties. However, chemical cross-linking of an unreinforced gel leads to unfavourable bonding and cellulose network formation, resulting in drastically increased pore sizes and reduced mechanical properties. In both cases, chemical cross-linking leads to larger internal pores.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


2021 ◽  
Vol 7 (2) ◽  
pp. eaba5743
Author(s):  
Haijun Liu ◽  
Mengru M. Zhang ◽  
Daniel A. Weisz ◽  
Ming Cheng ◽  
Himadri B. Pakrasi ◽  
...  

In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.


Sign in / Sign up

Export Citation Format

Share Document