scholarly journals Is there collaboration specific neurophysiological activation during collaborative task activity? An analysis of brain responses using electroencephalography and hyperscanning

2021 ◽  
Author(s):  
Paul Léné ◽  
Alexander J. Karran ◽  
Elise Labonté‐Lemoyne ◽  
Sylvain Sénécal ◽  
Marc Fredette ◽  
...  
2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2007 ◽  
Author(s):  
Francis J. McClernon ◽  
Rachel V. Kozink ◽  
Jed E. Rose

2017 ◽  
Vol 2017 ◽  
pp. 104-104
Author(s):  
Hanah Choi ◽  
◽  
DongHyun Kim ◽  
EunJu Lee ◽  
Eunju Ko

2018 ◽  
Vol 2018 ◽  
pp. 693-695
Author(s):  
Eun-Ju Lee ◽  
◽  
Kyeong Cheon Cha ◽  
Minah Suh

2019 ◽  
Author(s):  
Shun-Chang Zhong ◽  
Yun-Shao Lin ◽  
Chun-Min Chang ◽  
Yi-Ching Liu ◽  
Chi-Chun Lee

Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily T. Wood ◽  
Kaitlin K. Cummings ◽  
Jiwon Jung ◽  
Genevieve Patterson ◽  
Nana Okada ◽  
...  

AbstractSensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = −0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandre Boutet ◽  
Radhika Madhavan ◽  
Gavin J. B. Elias ◽  
Suresh E. Joel ◽  
Robert Gramer ◽  
...  

AbstractCommonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.


Sign in / Sign up

Export Citation Format

Share Document